

On the Applicability of Workflow Management Systems for the Preservation of Business Processes

Rudolf Mayer, <u>Stefan Pröll</u>, Andreas Rauber sproell@sba-research.org

University of Technology Vienna, Austria

http://www.ifs.tuwien.ac.at/dp

Secure Business Austria

http://www.sba-research.org

October 2012

Overview

- Introduction/Motivation
- Preserving Complex Systems
- Business Processes and eScience Experiments
- Workflow Management Systems: Taverna, Kepler and Activiti
- Example Workflow
- Validation and Verification
- Comparison
- Conclusions / Future Work

Preserving Complex Systems

TIME I FSS BLISINESS

The TIMBUS Approach

- Preserve business or eScience processes as complete as possible.
- 1. Identify components and their properties to preserve
- 2. Describe context of a process
 - Software dependencies (external and internal)
 - 2. Hardware dependencies
 - 3. Legislative requirements and restrictions
- Gather metadata
- 4. Store and maintain
- 5. Rerun

Business and Science

Workflows

- Model processes (scientific, business)
- Describe information flow between entities
- Formalize intermediate steps
- Add structure
- Abstraction

Goals

- Repeatability of experiments
- Re-executability of business processes
- Validation and Verification

Workflow Management Systems

- Scientific Workflow Management Systems (SWMS) provide an execution environment for workflows
- Orchestrate external services and local tools
- Model the information flow
- Integrate third-party libraries
- Easy to read and get "the big picture"
- Capture metadata about execution

Example – Music Processing

- Case study: Scientific Experiment
- Workflow: classification of music into predefined set of genres
- Learns a machine-learning model from given training data (i.e. data with manually assigned class/genre)
- Predicts genre for previously unseen data
- Useful e.g. for online music store, recommendation services, etc.

Example – Music Processing

- Input: Music (e.g. MP3 format)
- Input: Training data, i.e. music for which the genre is known apriori
- Output: Classification of Music, e.g. into genres
- Intermediate steps
 - Extract numeric description (features) from music
 - Combine features with ground truth into specific file format

Taverna

- General purpose workflow engine
- Open Source (LGPL), Java
- Data flow oriented
- Local services
 - File operations
 - Format conversions
- Remote services
 - REST

Taverna

- Data flow via ports between services
- Implicit looping and iteration over data structures
- Custom processor implementation
 - Beanshell
 - Java
- Monitoring
 - Events
 - Intermediate results
 - Provenance information

Taverna

- General purpose application suite
- Open source (BSD license), Java
- Based on Ptolemy II
- Data flow oriented
- Actors as processing steps
 - Large library of local actors
 - Fine grained operations
 - Mainly local services
 - Program flow actors

- API support
 - Java, custom actors
 - Python
- Workflow orchestration
 - Directors for different purposes
 - Explicit control flow required
- Monitoring
 - Live execution monitor
 - Intermediate results by actors

Activiti

Business Process ManagementPlatform

- Open Source (Apache License), Java
- No direct workflow design via GUI
- BPMN 2.0 editor via Eclipse Plugin
 - All BPMN elements available
 - Core concept: task element
 - Sequence flow connections
- No pre-defined tasks

Activiti

- Tasks implementation
 - Native Java
 - Scripting languages
 - Javacsript
 - Python
 - Ruby
 - Groovy
- User input via forms

Activiti

Validation and Verification

 Validation is only successful, if and only if all significant properties are equal before and after preservation

- Problem: External services and third party libraries
 - How to detect changes?
- Solution
 - Monitoring necessary
 - Comparison of intermediate results
 - Causal relationships and information flow as significant property
 - Provenance data

Provenance

- Describes data and information flow between computational tasks
- Serves as evidence of execution details
 - Allows to trace the sequence of steps
 - Describes causality between computations
 - Provides formal description of information flow

- Detect changes or manipulations in computational entities beyond the scope of local processes
- Verify results

Provenance in Taverna

- Stores all invocations and the sequence of steps in an internal database (Apache Derby)
- Export facilities:
 - Janus: includes data
 - OPM: only invoked steps

Provenance in Kepler

- Dedicated provenance module as seperate actor
- Provenance data stored in HyperSQL database
- Stores details provenance data:
 - Actors
 - Ports
 - Parameters
 - Relations
 - Time stamps
 - Additional informations
- Export facility: OPM

Provenance in Activity

- Process execution history
- H2 database
- No explicit inputs or outputs available, only global state
- No export facility

Comparison

- Activity, Kepler and Taverna can all implement processes by using Java
- Complexity in setup differs vastly
- Activity supports the most programming languages
- Kepler provides the most local services out of the box
- Taverna is the easiest to use
- Only Kepler and Taverna allow provenance export.

Conclusion

- Scientific and business processes need to be preserved
 - Difficult task due to complex service orchestration
- Later verification and re-execution is a crucial task
 - Capturing is not enough, validation is required
- SWMS add a layer of abstraction
 - Monitor execution
 - Evaluate interim and final results
- SWMS formalize processes
 - Documentation of processes
 - Verification possible

The End

Thank you for your attention.

Contact: Stefan Pröll, sproell@sba-research.org

