
On the Applicability of Workflow Management Systems
for the Preservation of Business Processes

Rudolf Mayer
Secure Business Austria

Vienna, Austria
rmayer@sba-research.at

Stefan Pröll
Secure Business Austria

Vienna, Austria
sproell@sba-research.at

Andreas Rauber
Secure Business Austria

Vienna, Austria
arauber@sba-

research.at

ABSTRACT
Digital preservation research has increasingly been shifting
focus from the preservation of data and static objects to in-
vestigate the preservation of complete processes and work-
flows. Capturing all aspects of a process to be preserved,
however, is an extensive and difficult undertaking, as it re-
quires capturing complete software systems with potentially
complex setups. Further, the process might use external ser-
vices that are not easy to capture and monitor. In this pa-
per, we therefore investigate the applicability and usability
of Workflow Management Systems for executing processes in
a standard environment where the state of the process can
be closely monitored. To this end, we compare three popu-
lar workflow management systems. We use a scenario from
e-Science, implementing a data analysis process, to evaluate
the challenges and implications for establishing sustainable
and verifyable e-Science processes.

General Terms
E-Science, Research Infrastructures, Process Preservation

1. INTRODUCTION
The goal of digital preservation is to maintain the accessibil-
ity of digital objects. In recent years there has been a shift of
interest from rather static files such as documents or images
towards dynamic objects. Preserving complex systems and
composite processes is a challenging task and deserves atten-
tion, as they can be often found in the business and research
community. Such processes are highly dynamic in contrast
to static files and require constant monitoring. The process
orientation can be identified in rather young research areas
such as e-Science and also the discipline of business process
engineering. In science, experiments need to be preserved as
researchers need to be able to reproduce and build on top
of earlier experiments to verify and expand on the results.
It may also proof essential to understand any pre-processing
steps and consequences on the interpretation of results in
any future meta-studies building on top of earlier research

results. In businesses, preservation of processes can play an
important role e.g. in liability cases, where a company has
to prove that a certain series of steps was executed in the
correct manner and according to standards, best practices
or laws and regulations. Another motivation are patent lit-
igations, when a company would want to demonstrate how
a certain invention originated. Therefore businesses have to
preserve their processes for many years and need to rerun
them whenever necessary.

Both areas have in common that they involve large amounts
of data and integrate heterogeneous services. These systems
form critical infrastructure. Hence their preservation is an
urgent and important quest that needs to be tackled. This
is a challenging task as these systems are highly complex
and consist of many different components, not all of which
are under the influence of one controlling instance.

Processes describe how a certain goal has to be achieved.
Scientific and business processes consist of intermediate steps
which are modelled by the use of workflows. There exist
workflow management systems for both domains. These are
generic software systems that are driven by explicit process
designs to enact and manage operational business or scien-
tific processes, as defined by Aalst[12]. A workflow is defined
as “the automation of a business process, in whole or part,
during which documents, information or tasks are passed
from one participant to another for action, according to a
set of procedural rules.”[12]. Hence, workflows describe the
flow of information through a business process. The same
paradigm has been adapted in the scientific domain, which
lead to Scientific Workflow Management Systems that aid
scientists to handle increasingly complex and data driven
experiments. In order to tackle this increasing complexity
and the orchestration of manifold services and systems, the
concept of scientific workflows has received increasing at-
tention within the research community. E-Science projects
profit from the combination of automated processing steps
in workflows in order to perform complex calculations and
data transformations. The advantage of workflows is their
capability of adding structure to a series of tasks. They
can be visualized as graph representations, where nodes de-
note processes or tasks and edges denote information or data
flows between the tasks. This adds a layer of abstraction and
helps to clarify interactions between tasks [2].

Many of today’s data-intensive experiments depend on a
number of external service such as Web services, or continu-

ously changing third-party libraries and applications. These
changes are not always under the control of the researcher,
and may happen at a system level beyond the awareness of
the individual researcher, such as e.g. a new library being
installed as part of (automatic) system maintenance. This
may lead to different results from the workflow, or render
the workflow not executable altogether. The possibility to
reproduce workflows is also a crucial principle in the business
domain.

Preserving the repeatability of such a process in a changing
technological environment is therefore a current and emerg-
ing topic in Digital Preservation research. Digital preser-
vation of business or e-Science processes requires capturing
the whole context of the process, including e.g. dependencies
on other computing systems, the data consumed and gen-
erated, and more high-level information such as the goals
of the process. In this paper, we investigate the feasibility
of Workflow Management Systems (WFMS) for preserving
scientific processes. We propose that the implementation of
a scientific process can be seen as migration strategy, as the
original design, structure, meaning and results can be pre-
served. We provide an overview on the power of such sys-
tems and evaluate the effort to migrate workflows between
different WFMSs.

The success of preservation activities has to be evaluated.
Hence it is required to identify and examine all involved com-
ponents and the data exchanged between them. This can be
achieved by the use of provenance data, which describe the
lineage of data and the causal relationships between inter-
mediate steps. Most WFMSs provide the possibility to gen-
erate such provenance data automatically. Therefore these
systems are valuable for the preservation of processes. In
this paper, we first outline which information is important
to be captured. We will then investigate the suitability of
such automatically recorded provenance data in a case-study
of a scientific experiment in the data mining domain.

2. WORKFLOWS AND WORKFLOW MAN-
AGEMENT SYSTEMS

In both domains - science and business - workflows allow to
precisely define the involved steps, the required context and
the data flow between components. The modelling of work-
flows can be seen as an abstraction layer, as they describe
the computational ecosystem of the software used during a
process. Additionally, they provide an execution environ-
ment, that integrates the required components for perform-
ing a process and executing all defined subtasks. This ab-
straction supports the preservation process as there is more
information about the execution details available. Hence we
examine the feasibility of scientific workflow systems for the
preservation of scientific processes.

Different scientific workflow management systems (SWMS)
exist that allow scientists to combine services and infras-
tructure for their research. The most prominent examples
of such systems are Taverna [8] and Kepler [5]. Vistrails [10]
is another workflow management system prominent espe-
cially in visualisation, but will not be covered in detail here.
Workflow management systems are also prominently used to
execute business processes. We will look at the open-source
system Activiti.

2.1 Taverna Workbench
Taverna Workbench1 is an open source project that allows to
design and run workflows. It is a general purpose workflow
engine that can be used for various applications. It is written
in the Java programming language and distributed under the
GNU Lesser General Public License (LGPL2).

Taverna allows to orchestrate various services and to model
the data flow between its components in order to automate
a process. Therefore Taverna is widely used in the scientific
community and used for modelling data centric experiments.
It provides a graphical user interface that allows scientists
to design and execute their experiments in a convenient way
and to visualize the data flow of an experiment. An example
of such a workflow is given in figure 1.

Taverna is a service oriented workflow engine and allows to
solve tasks by using either local or remote services. Local
services include basic file operations, format conversions and
many different tools. Remote services include predefined
Web services from various domains, such as bioinformatics
or chemistry. It is also possible to implement custom services
using the Taverna Java Application Programming Interface
(API). Services can also be implemented via scripting lan-
guage; To this end Taverna supports the language BeanShell,
which is based on the Java programming language.

Taverna uses ports to exchange data between the services:
each service can have several input and output ports, where
one output port serves as input for a subsequent service.
The workbench has an integrated support for scalars and
lists, which includes implicit iteration over arrays of data.
Looping over data elements is also integrated and allows the
usage of control and synchronization points. In its basic
configuration, Taverna simply passes down data tokens in a
downstream fashion to the next connected service.

2.2 The Kepler Project
The Kepler scientific workflow system[5] is a general purpose
application suite for managing, orchestrating and executing
scientific workflows. Kepler is an open source project, dis-
tributed under BSD license3 and written in the Java pro-
gramming language. It provides a graphical interface which
enables scientists to design and execute experiments, by
linking various services each fulfilling a subtask of a work-
flow. Kepler inherited the graphical user interface and the
actor-centric view of workflows from the Ptolemy II4 project,
which is a framework for designing embedded systems and
the communication between components.

Actors are used to model individual steps during the execu-
tion of an experiment. They can perform relatively simple
tasks as format conversions, displaying data or reading a file
from a Web server. There also exist more complex actors
that invoke specialized grid services, utilize domain specific
databases or execute external services. It is also possible
to develop custom actors by implementing desired features
in Java using the Kepler API, and instantiate them within

1www.taverna.org.uk/
2www.gnu.org/licenses/lgpl.html
3www.opensource.org/licenses/bsd-license.php
4http://ptolemy.eecs.berkeley.edu/ptolemyII/

the Kepler system. Further more, Python scripts can be
executed as well, which reduces the development effort and
enhances the flexibility, as no detailed knowledge about the
Kepler API is needed.

Actors use ports for communicating and exchanging data
with each other; each port can either serve as input, output
or both to an actor. Ports connect Actors by using chan-
nels, which models the data flow and logical sequence of in-
termediate steps within the workflow. Actors are therefore
roughly comparable to services in Taverna.

The workflow is orchestrated by a so-called director, which
is the component responsible for arranging the timing of
the data flow. There exist different directors for various
purposes, such as sequential, dynamic or parallel execution
of actors.

2.3 Activiti
Activiti is a workflow and Business Process Management
(BPM) Platform, based on the Business Process Modelling
Notation (BMPN) 2.0. It is available as open source soft-
ware and written in the Java programming language, main-
tained by a consortium of companies offering cloud and Java
solutions.

Unlike Taverna or Kepler, it doesn’t provide an integrated
GUI. Instead, the design of the workflows is enabled by an
BPMN 2.0 editor which can be installed as an extension to
the Eclipse Integrated development environment (IDE). All
the elements available in BMPN 2.0 can thus be used to
design the workflow. For execution of the workflow, Activ-
iti can be run as a web-application on a Java Application
Server, or as a stand-alone Java application.

Of the BPMN 2.0 elements, most importantly, tasks repre-
sent processing steps in the workflow. These tasks are as-
sociated via simple sequence flow connections to define the
order of execution. The control flow can be modelled with
gateways, such as for parallel or exclusive processing. There
is no explicit definition of data exchanged, as it is done via
ports in Taverna or Kepler. Rather, a global state of data
variables is kept in a key-value map.

Implementation of tasks is enabled by Java classes, or script-
ing languages that support the Java Scripting Platform,
which includes among others JavaScript, Python, Ruby, and
Groovy. Both are straightforward with convenient integra-
tion into the BPMN editor. User interaction tasks, which
play a more important role in business processes than in
scientific experiments, can be implemented via forms; these
enable the user to input data, e.g. as workflow input param-
eters. Unlike the scientific workflow management systems of
Taverna and Kepler, Activiti doesn’t provide a library of
pre-defined tasks to use; however, in the implementation
one can rely on the many libraries available to Java and all
the script languages supported.

3. CASE STUDY - SCIENTIFIC DATA MIN-
ING PROCESS

In this section we discuss the implementation of a typical
e-Science process with the workflow management systems

introduced above. The specific process used in our case
study is a scientific experiment in the domain of data min-
ing, where the researcher performs an automatic classifica-
tion of music into a set of predefined categories. This type
of experiment is a standard scenario in music information
retrieval research, and is used with many slight variations
in set-up for numerous evaluation settings, ranging from ad-
hoc experiments to benchmark evaluations such as e.g. the
MIREX genre classification or artist identification tasks [6].

The experiment involves several steps, which can partially
be parallelised. First, music data is acquired from sources
such as benchmark repositories or, in more complex settings,
online content providers, and in the same time, genre assign-
ments for the pieces of music are obtained from ground truth
registries, frequently from websites such as Musicbrainz.org.
Tools are employed to extract numerical features describing
certain characteristics of the audio files. In the case of the
experimental set-up used for the case study, we assume a
more complex set-up where an external Web service is used
to extract such features. This forms the basis for learning
a machine learning model using the WEKA machine learn-
ing software, which is finally employed to predict genre la-
bels for unknown music. Further, several scripts are used to
convert data formats and other similar tasks. The process
described above can be seen as prototypical from a range
of e-Science processes, consisting both of external as well as
locally available (intermediate) data, external Web services
as well as locally installed software used in the processing of
the workflow, with several dependencies between the various
components.

This scientific experiment has so far been executed by plug-
ging together a number of Java programs, writing their data
into intermediate files, and scripts implemented in the Linux
shell to provide serial and parallel execution. This set-up
does not provide a high degree of resilience to technological
changes: the fact that both source data as well as ground
truth data are provided externally does not allow the rep-
etition of any experiment with comparable results. Depen-
dencies on software and libraries installed in the experiment
platform, that will usually change with frequent system up-
dates further limit repeatability and re-executability. This
is further threatened by the fact that the logic of extracting
the numeric descriptors is encapsulated in an external ser-
vice that may update its functional description at any point
in time, potentially without providing any information on a
service version update.

The scientific process as it is implemented and executed at
the moment is exposed to a number of threats. For once,
the process is not very well documented, e.g. the exact in-
put and output parameters of each step are not defined, as
well as the sequence of execution of the scripts. It is also
dependant on the shell of a specific operating system. Even
if e.g. the operating system and version is the same, local
configuration of the default shell can vary for example on the
Linux system, and thus scripts might be not be executable.
Monitoring of the process execution is difficult, as there is
no direct support available from the shell to capture input
and output parameters. Finally, shell scripts might not be
persistently stored, but just typed and executed on the shell,
and lost upon ending that shell session.

Figure 1: Scientific workflow modelled in the Taverna Work-
flow engine

Even though some of these aspects might be resolved with
different means, migration of the process to a workflow man-
agement system seems to be a holistic approach towards the
digital preservation process.

3.1 Implementation in Taverna
The implementation in Taverna required the migration of
scripts and commands, that would have been executed with
the shell of the operating system, to scripts in the Taverna-
supported language (BeanShell). These scripts were mainly
used for performing format migrations for converting output
data into the desired input format for the following tasks.
The first step of the workflow could be solved by using ser-
vices shipped with Taverna. We queried a directory list of
a Web server containing the music files to be classified. Af-
ter the server returned the HTML document containing the
URLs of the files, a BeanShell script was required to parse
the actual locations of the files and for preparing a list.
Consequently, the files had to be fetched from the collected
URLs. This was achieved by modifying a provided Taverna
service slightly to adapt it from images to MP3 files.

The next step (Base64 encoding) could be accomplished with
an unmodified Taverna service, but had to be followed by a
custom encoding BeanShell for ensuring URL safety of the
encoded files. The now correctly encoded files are passed to
a REST-Web service in the following step. Taverna provides
a ready to use REST invocation service, that has to be fed
with the according file and an authentication voucher. After
the service processed the files, a custom BeanShell script was
used for merging the single feature vectors to combined file.

The resulting file was then converted to the so called ARFF
format, by using a BeanShell script which invokes a third
party library. This Java library had to be provided to the

Taverna classpath in advance of the execution, and the usage
of the library had to be explicitely specified in the BeanShell
service using it. After this has been achieved, the API of this
library can be addressed via BeanShell as if it were regular
Java. The final step was again solved by using a BeanShell
script and an external library, which performs the actual
classification.

The implementation in Taverna is fairly straight forward, as
it allows to use the power of Java by a simplified scripting
language. The library of existing local and remote services is
extensive and these services can easily be adapted to meet
required specifications. Another advantage of Taverna is
that the design, adaptation and execution of scientific exper-
iments is integrated completely into the workbench, which
reduces the installation and administration effort.

3.2 Implementation in Kepler
Kepler also provides scripting capabilities for Python, specif-
ically by Jython5, an implementation which runs inside the
Java Virtual Machine (JVM) and thus does not require ad-
ditional software packages to be used. Nevertheless, as the
third party libraries used in the process are written in Java,
we were encouraged to implement the required actors in Java
as well. This however is a serious overhead compared to be-
ing able to use the third-party library directly from Bean-
Shell as in Taverna. To implement the custom actor, one
needs to set up the Kepler development environment. The
build process is documented well but requires several steps
until the actual development of actors can be achieved.

The workflow implemented in Kepler is depicted in figure
2. A dynamic dataflow (DDF) director is used as there are
several loops in the workflow. The first actor activated in
the workflow is the Web Service. As invoking the service re-
quires several steps, we encapsulated the internal logic into
a so called composite actor. A composite actor itself con-
tains a sub-part of the workflow and is used for reducing the
complexity of the overall workflow, by hiding certain parts
from the overview.

Although Kepler ships with a large amount of ready to use
actors, it was necessary to implement several custom actors
for e.g. Base64 and URL encoding on our own. The capabil-
ities of wrapping existing actors, as it is enabled in Taverna,
without modifying their source code is limited. Also the im-
plementation of standard dataflow controls such as loops and
conditionals requires many small intermediate steps, which
render the overall process hard to read, interpret and under-
stand.

3.3 Implementation in Activiti
After setting up the development environment in the Eclipse
IDE, the implementation of the workflow in Activiti is rather
straightforward, as task definition in the BPMN diagram
and implementation of these classes are conveniently inte-
grated. Even though Activiti does not provide a library
of commonly repeating task implementations, the straight-
forward usage of Java as task implementation language al-
lows to draw on the rich set of third-party libraries for com-
pact implementations. Some steps, such as the fetching of

5www.jython.org/

Figure 2: The Music Process Workflow designed in Kepler

Figure 3: The Music Process Workflow designed in Activiti BMPN 2.0

files and encoding thereof, have been implemented with in
Javascript. Fetching the genre assignment ground truth,
calling the feature extraction REST service, converting the
data format and performing the classification were solved as
Java task implementations.

4. VALIDATION AND VERIFICATION OF
PROCESS EXECUTION

Preserving workflows entails the requirement of validating
their intermediate results and the overall output of a process
execution. Preservation is only then considered a success, if
all identified significant properties are equal before and after
the preservation. The challenge of keeping workflows acces-
sible is caused by the dynamic nature of processes. External
components such as Web services and third party libraries
are beyond the influence of workflow designers and users.
These components might change at any point in time with-
out prior announcement. Hence, they are critical threats
to long term accessibility of workflows. In order to detect
these changes it is necessary to monitor the workflow and
the intermediate results they produce. This is a crucial re-
quirement, as otherwise the reproducibility of workflows is
at risk.

Measuring changes in significant properties is a difficult task.
The authors of [3] propose a framework for evaluating whether
two versions of a digital object are identical. The framework
consists of several steps that allow to identify significant
properties of digital objects and examine their equivalence
after an emulation process. These steps include the descrip-
tion of the original environment and the identification of
external resources, that are beyond the influence of a sys-
tem and influence the object to be preserved. The authors
stress that there are different levels at which objects can be
compared with each other. This is also true for workflows.
After a workflow has been preserved, the new environment
has to be tested if it behaves the same way as the origi-
nal. Thus test data needs to be used in order to extract and
compare the significant properties of the workflow, i.e. if the
reaction is identical to the data in both, the original and the
preserved environment. The focus of [3] is on emulation as
a preservation strategy. The underlying concepts can nev-
ertheless be applied to other preservation strategies as well,
that is for instance migrating a workflow, and specifically its
components, between different workflow engines.

When preserving processes, the data flow and the causal re-
lationships between involved services can be seen as signifi-

cant properties. Descriptions of this information is therefore
required in order to compare intermediate results with each
other. Most workflow management systems use the concept
of provenance data to answer questions about execution and
design details. Hence provenance data can be used for direct
comparison of workflows across workflow engine boundaries.

Provenance data describes the lineage of data and provides
evidence about execution details, involved services and their
intermediate results. A taxonomy of provenance techniques
used in various WFMS was introduced in [11]. This tax-
onomy allows to categorize different systems based on the
purpose of recorded provenance, their focus, representation,
storage and dissemination. A further distinction between
provenance systems can be achieved by the locus of data
processing control as identified in [1]. The authors distin-
guish between command line based data processing, script
and program based data processing, query based processing,
service based processing and workflow management systems
based processing. Depending on the type of data process-
ing, different provenance data can be collected. Provenance
data captured during process execution is thus an important
aspect that must be captured as process context.

The recorded provenance data can be utilised to verify wheth-
er the new version of the process still renders the same re-
sults. To this end, as the evaluation framework suggests, one
can automatically reapply the inputs and verify the recorded
outputs, similar to what would be performed in automated
software testing.

The provenance data can further be used for implementing a
watch service for software and external service dependencies,
e.g. by periodically executing the process with all historic
recordings of previous executions, either as a complete pro-
cess, or for each process step individually.

4.1 Provenance Capturing in Taverna
Taverna is capable of capturing the data exchanged between
the process steps as provenance data, and stores it in a rela-
tional database (Apache Derby). Taverna records all invo-
cations of the workflow and its individual steps, along with
the data exchanged and timing information. The data can
be exported in the Taverna-specific format Janus [7]; the
also available Open Provenance Model format [9] contains
only information of the invoked process steps, but not the
actual data, and no information about execution time.

An example of the provenance data recorded for the two pro-
cess outputs, the percentage of correctly classified instances,
and the detailed classification results, are given in Listings 1
and 2 (note that some unique identifiers, such as URLs as
namespaces and identifiers for the workflow and specific data
elements, have been abbreviated for space reasons).

Listing 1: Example provenance data of Taverna for the pro-
cess output ClassificationAccuracy (cf. Figure 1). The first
RDF Description element defines the output port Classifica-
tionAccuracy, the second element contains the actual value
of “80.0”.

<rd f : Desc r ip t i on rd f : about=”{nsTaverna }/2010/workflow/{
idWF}/ proce s so r /

Mus icClas s i f i ca t ionExper iment /out/
C la s s i f i c a t i onAccu ra cy”>

<janus : ha s va lu e b ind ing rd f : r e source=”{nsTaverna }/2011/
data/{ idDataGrp}/ r e f /{ idDataPort0}”/>

<r d f s : comment rd f : datatype=”{nsW3}/2001/XMLSchema#s t r i n g
”>

Cla s s i f i c a t i onAccu ra cy
</rd f s : comment>
<janus : i s p r o c e s s o r i n p u t rd f : datatype=”{nsW3}/2001/

XMLSchema#boolean”>
f a l s e

</janus : i s p r o c e s s o r i n pu t >
<janus : h a s po r t o rd e r rd f : datatype=”{nsW3}/2001/

XMLSchema#long”>
0

</janus : ha s po r t o rde r>
<rd f : type rd f : r e source=”http :// pur l . org /net / taverna /

janus#port”/>
</rd f : Descr ipt ion>

<rd f : Desc r ip t i on rd f : about=”{nsTaverna }/2011/ data/{
idDataGrp}/ r e f /{ idDataPort0}”>

<r d f s : comment rd f : datatype=”{nsW3}/2001/XMLSchema#s t r i n g
”>

80 .0
</rd f s : comment>
<janus : h a s p o r t v a l u e o r d e r rd f : datatype=”{nsW3}/2001/

XMLSchema#long”>
1

</janus : h a s po r t va l u e o rd e r >
<janus : h a s i t e r a t i o n rd f : datatype=”{nsW3}/2001/XMLSchema

#s t r i n g ”>
[]

</janus : h a s i t e r a t i o n >
<rd f : type rd f : r e source=”http :// pur l . org /net / taverna /

janus#por t va lu e ”/>
</rd f : Descr ipt ion>

Listing 2: Example provenance data of Taverna for the pro-
cess output DetailedClassificationResults (cf. Figure 1). The
first RDF Description element defines the output port De-
tailedClassificationResults, the second element contains the
actual value, one entry for each file tested, with the actual
class, the predicted class, and the confidence of the classifier
in the prediction.

<rd f : Desc r ip t i on rd f : about=”{nsTaverna }/2010/workflow/{
idWF}/ proce s so r /

Mus icClas s i f i ca t ionExper iment /out/
De t a i l e dC l a s s i f i c a t i o nRe s u l t s ”>

<janus : ha s va lu e b ind ing rd f : r e source=”{nsTaverna }/2011/
data/{ idDataGrp}/ r e f /{ idDataPort1}”/>

<r d f s : comment rd f : datatype=”{nsW3}/2001/XMLSchema#s t r i n g
”>

De t a i l e dC l a s s i f i c a t i o nRe s u l t s
</rd f s : comment>
<janus : i s p r o c e s s o r i n p u t rd f : datatype=”{nsW3}/2001/

XMLSchema#boolean”>
f a l s e

</janus : i s p r o c e s s o r i n pu t >
<janus : h a s po r t o rd e r rd f : datatype=”{nsW3}/2001/

XMLSchema#long”>
0

</janus : ha s po r t o rde r>
<rd f : type rd f : r e source=”http :// pur l . org /net / taverna /

janus#port”/>
</rd f : Descr ipt ion>

<rd f : Desc r ip t i on rd f : about=”{nsTaverna }/2011/ data/{
idDataGrp}/ r e f /{ idDataPort1}”>

<r d f s : comment rd f : datatype=”{nsW3}/2001/XMLSchema#s t r i n g
”>

1 2 : Hip−Hop 2 : Hip−Hop 0.667 (3 .359461)
2 2 : Hip−Hop 2 : Hip−Hop 0.667 (3 .294687)
3 1 : C l a s s i c a 1 : C l a s s i c a 0 .667 (2 .032687)
4 3 : Jazz 3 : Jazz 0 .667 (2 .536849)
5 1 : C l a s s i c a 1 : C l a s s i c a 0 .667 (1 .31727)
6 1 : C l a s s i c a 3 : Jazz + 0.667 (3 .46771)
7 3 : Jazz 1 : C l a s s i c a + 0.333 (2 .159764)
8 2 : Hip−Hop 2 : Hip−Hop 0.667 (3 .127645)
9 3 : Jazz 3 : Jazz 0 .667 (3 .010563)

10 2 : Hip−Hop 2 : Hip−Hop 0.667 (4 .631316)
</rd f s : comment>

Each listing contains two RDF Description elements, where
the first one defines the output port, and contains as a sub-

element the identifier of the element containing the actual
value, which is the second Description element in both list-
ings. With the identifiers used in the rdf:about attributes it
is possible to uniquely identify the process step (and itera-
tion, if the step is looped over) the data originates from.

4.2 Provenance Capturing in Kepler
The Kepler SWMS provides a dedicated module for record-
ing provenance information[4]. When this software compo-
nent is loaded, a specialized actor called Provenance Recorder
is available. This actor is used for monitoring the process
execution and storing metadata about the workflow persis-
tently. The provenance module stores provenance data by
default in the relationl database HyperSQL (HSQLDB6).
It is integrated directly into the provenance module and
can be queried by using the Database Manager provided
by HSQLDB. Kepler stores detailed metadata about every
execution of a workflow. This covers actors, ports, param-
eters, relations and additional information about the work-
flow, such as user names and context information. The Ke-
pler provenance system also stores the data used during the
execution, which allows the detection of changes within the
results.

All information stored within HSQLDB can be queried by
using standard SQL, and from a Java program via an API.
The OPM export feature completes the provenance data
management of Kepler; in contrast to Taverna the exported
OPM XML file contains time stamps and allows to derive
the execution sequence easily.

Listing 3: A Kepler OPM XML snippet

<wasGeneratedBy>
<e f f e c t id=” a2”/>
<r o l e value=”output”/>
<cause id=” p0”/>
<time>

<noLaterThan >16:26:17.333+02:00</ noLaterThan>
<noEarlierThan >16:26:17.333+02:00</ noEarlierThan>
<c lockId> c1 </c lockId>

</time>
</wasGeneratedBy>

Listing 3 depicts an example of an exported OPM file. It
contains references to the actor that generated the output
(p0) and refers to the output of this event (a2), using auto-
generated identifiers to refer to these elements.

4.3 Provenance Capturing in Activiti
Activiti refers to provenance data as (process execution) his-
tory, and allows to configure recording on several levels of
detail. Similar to the other systems, the data is stored in
a relational database (H27), which can be queried to re-
trieve information about the process and task invocations.
As there is no explicit input and output of process steps
(ports in Taverna and Kepler), rather the global state of
data in the process execution is stored, than specific param-
eters for a specific task invocation. Activiti also does not
provide an export into e.g. the OPM format.

6www.hsqldb.org/
7http://www.h2database.com

5. COMPARISON OF WORKFLOW MAN-
AGEMENT SYSTEMS

We identified a number of criteria important for the migra-
tion and execution of processes workflow management. A
summary of these criteria is provided in Table 1.

Regarding setup of the design and execution platform, Ke-
pler and Taverna provide a straightforward installation rou-
tine, while Activiti requires a bit more work with preparing
the Eclipse IDE and plugins.

All systems evaluated in this paper allow to implement the
process with the use of the Java programming language,
even though the complexity of doing so differs greatly; both
Kepler and Taverna require the programmers to develop the
modules outside the workflow management system and then
to register their services and actors, respectively, with the
engine. Implementing tasks in Activiti benefits from the
initial setup of the Eclipse environment.

The systems differ greatly when it comes to the support of
scripting languages for fast and simple tasks. Here, Activ-
iti provides the widest range of languages, and is in theory
not limited, as long as the language conforms with the Java
Scripting Platform. If there are a lot of legacy scripts that
would need to be preserved, Activiti would thus seem to be
a prime choice. It seems vital that other systems would al-
low such a wide range of implementations as well. Still, this
will also raise the complexity of preserving the actual pro-
cess as components in many different languages may need to
be preserved, together with their operational infrastructure
(compiler, interpreter, runtime environments, etc.). Kepler
provides Python, and Taverna Beanshell scripting capabili-
ties. The latter further provides a large library of services
that can be used to quickly perform common tasks, and al-
lows to easily alter these template implementations.

All systems allow to record provenance data during the pro-
cess execution, which enables for validation. Kepler and
Taverna provide various types of exports of this data, in the
Open Provenance Model (OPM) and custom formats, and
are more detailed on the single processing steps, as input and
output ports of each process step are clearly defined. This
seems to be an important aspect for detailed validation and
watch activities. Activiti could be easily augmented by an
export into the OPM, and input and output parameters for
a processing step could, for a specific process execution, be
deduced from the change in global variables.

6. CONCLUSIONS
The preservation of complete (business) processes is starting
to be understood as a new challenge in digital preservation
research. Scientific processes need to be preserved to allow
later verification of results, and business process preserva-
tion can play an important role when it comes to liability or
patent infringement litigations.

However, process preservation is inherently difficult – to-
day’s processes are executed inside complex software ecosys-
tems, and composed of a myriad of services. Capturing this
software setup and its configuration is only one step – with-
out being able to validate the process execution, we cannot

Table 1: Features of Workflow Management Systems
Engine Implemen-

tation
Script Lan-
guage Support

Designer Sup-
port

Execution
Engine

Provenance
Capturing

Provenance
Export

Taverna Java Beanshell
(Java)

Standalone Integrated
with designer

Database
(Apache
Derby)

OPM & Janus

Kepler Java Python Standalone Integrated
with designer

Database
(HSQLDB)

OPM

Activiti Java JavaScript,
Python, Ruby,
Groovy, ...

Via Eclipse
IDE

Web applica-
tion or Java
program

Database (H2
DB)

-

guarantee that the preserved process is still the same when
re-executed at a later time.

These two concerns are a bit relaxed when defining and ex-
ecuting the process in a dedicated workflow engine, which
provides a layer of abstraction to the original software setup.
It also allows to closely monitor, and thus evaluate, the pro-
cess execution. In this paper, we therefore described a num-
ber of popular workflow management systems, and described
how they can be used to migrate a scientific experiment pro-
cess. Efforts for migrating a workflow to a workflow man-
agement system might be significant; therefore, flexibility in
the implementation is a prime aspect.

With the migration of a process to a workflow management
engine, we can mitigate a few concerns that can hamper the
preservation of this process. First, the migration to work-
flow engines has the benefit of requiring a clear and formal
definition of the processes, which might not be present be-
fore. Thus, we obtain documentation and detailed descrip-
tions on the process. Further, we can evaluate and monitor
the execution of the processes closely, which enables verifi-
cation that a process is still executed unchanged. Finally,
the migration to a workflow management system in gen-
eral is a step of abstraction from a specific software setup.
The requirements and interfaces to operating systems and
system libraries are greatly reduced, and dependencies on
third-party libraries are generally explicitly defined.

The migration does not prevent external elements such as
the webservice employed in our case study from becoming
obsolete. Thus, contracts and service level agreements have
to be agreed on with the providers of these services to main-
tain and migrate their services if needed. Then, using previ-
ously recorded provenance data, we can verify whether these
services still behave as before.

7. ACKNOWLEDGMENTS
Part of this work was supported by the projects APARSEN
and TIMBUS, partially funded by the EU under the FP7
contracts 269977 and 269940.

8. REFERENCES
[1] R. Bose and J. Frew. Lineage Retrieval for Scientific

Data Processing: a Survey. ACM Computing Surveys,
37(1):1–28, Mar. 2005.

[2] J. Freire, D. Koop, E. Santos, and C. T. Silva.
Provenance for Computational Tasks: A Survey.
Computing in Science and Engg., 10(3):11–21, May

2008.

[3] M. Guttenbrunner and A. Rauber. A Measurement
Framework for Evaluating Emulators for Digital
Preservation. ACM Transactions on Information
Systems (TOIS), 30(2), 2012.

[4] The Kepler Project. Getting Started with Kepler
Provenance 2.3, August 2011.

[5] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice and
Experience, 18(10):1039–1065, 2006.

[6] Music Information Retrieval Evaluation eXchange
(MIREX). Website: www.music-ir.org/mirex.

[7] P. Missier, S. S. Sahoo, J. Zhao, C. A. Goble, and
A. P. Sheth. Janus: From Workflows to Semantic
Provenance and Linked Open Data. In Proceedings of
the International Provenance and Annotation
Workshop (IPAW2010), pages 129–141, Troy, New
York, USA, June 15–16 2010.

[8] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan,
A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble. Taverna, reloaded. In M. Gertz, T. Hey, and
B. Ludaescher, editors, SSDBM 2010, Heidelberg,
Germany, June 2010.

[9] L. Moreau, J. Freire, J. Futrelle, R. E. Mcgrath,
J. Myers, and P. Paulson. Provenance and Annotation
of Data and Processes, chapter The Open Provenance
Model: An Overview, pages 323–326. Springer-Verlag,
Berlin, Heidelberg, 2008.

[10] C. Silva, J. Freire, and S. Callahan. Provenance for
visualizations: Reproducibility and beyond.
Computing in Science Engineering, 9(5):82–89, Oct.
2007.

[11] Y. L. Simmhan, B. Plale, and D. Gannon. A Survey of
Data Provenance in E-Science. SIGMOD Rec.,
34(3):31–36, Sept. 2005.

[12] A. van der Aalst, A. Hofstede, and M. Weske.
Business process management: A survey. In M. Weske,
editor, Business Process Management, volume 2678 of
Lecture Notes in Computer Science, pages 1019–1019.
Springer-Verlag, Berlin, Heidelberg, 2003.
10.1007/3-540-44895-0 1.

