
Describing Digital Object Environments in PREMIS
Angela Dappert

Digital Preservation Coalition
℅ The British Library

96 Euston Road
London, NW1 2DB, UK
angela@dpconline.org

Sébastien Peyrard
National Library of France

Bibliographic and Digital In-
formation Department
Quai François-Mauriac
75706 Paris Cedex 13

sebastien.peyrard@bnf.fr

Janet Delve
The School of Creative

Technologies
The University of Portsmouth

Winston Churchill Avenue
Portsmouth, PO1 2DJ
janet.delve@port.ac.uk

 Carol C.H Chou
Florida Digital Archive
Florida Virtual Campus

5830 NW 39th Ave.
Gainesville, FL 32606

U.S.A.
cchou@ufl.edu

ABSTRACT

 “Digital preservation metadata” is the information that is need-

ed in order to preserve digital objects successfully in the long-

term so that they can be deployed in some form in the future. A

digital object is not usable without a computing environment in

which it can be rendered or executed. Because of this, infor-

mation that describes the sufficient components of the digital

object’s computing environment has to be part of its preserva-

tion metadata. Although there are semantic units for recording

environment information in PREMIS 2, these have rarely, if

ever, been used. Prompted by increasing interest in the descrip-

tion of computing environments, this paper describes on-going

efforts within the PREMIS data dictionary’s Editorial Commit-

tee to define an improved metadata description for them.

Keywords

H.1.0 [General Models and Principles]: PREMIS; preservation

metadata; technical environments; software preservation; hard-

ware preservation; representation information; representation

information network; conceptual modelling.

1. INTRODUCTION
“Metadata” is information about an object that is needed in

order to manage that object. “Digital preservation metadata” is

the information that is needed in order to preserve digital objects

successfully in the long-term so that they can be deployed in

some form in the future [1]. A digital object is not usable with-

out a computing environment in which it can be rendered or

executed. Digital objects are normally not self-descriptive and

require very specific intermediary tools for access by humans

and specific knowledge for interpreting them. Neither may be

commonly available amongst a repository’s Designated Com-

munity (as defined in OAIS [2]). Because of this, information

that describes the sufficient components of the digital object’s

environment constitutes essential representation information that

is needed in order to be able to use the digital object and to

make it understandable in the future.

Core metadata for the digital preservation of any kind of

digital object is specified in the PREMIS Data Dictionary [3], a

de-facto standard. Core metadata is the metadata that is needed

by most preservation repositories, rather than application or

content specific metadata defined for niche uses. Metadata about

digital objects’ computing environments must be preserved to-

gether with the digital objects as part of their core metadata.

In addition to describing an Object’s representation infor-

mation, some computing environments, such as software, can

themselves be the primary objects of preservation, as may be the

case for computer games. They may also take the role of a soft-

ware Agent in a preservation Event, and may require a thorough

metadata description for those reasons.

Although there are semantic units for recording environ-

ment information in PREMIS version 2, these have rarely, if

ever, been used. In 2011, the PREMIS data dictionary’s Editori-

al Committee commissioned a working group to re-examine

what computing environment metadata needs to be captured in

order to be able to successfully redeploy digital objects in the

long-term. This paper describes these on-going efforts. The re-

sult may be implemented in version 3 of the PREMIS Data Dic-

tionary.

2. PRESERVING COMPUTING ENVI-

RONMENTS

2.1 The Current State
In version 2 of the PREMIS Data Dictionary [3], there are

four key entities that need to be described to ensure successful

long-term preservation of digital objects: Object, Event, Agent

and RightsStatement. The Object entity provides two places to

describe subordinate environments. For one, there is the “envi-

ronment” semantic unit that permits the description of software,

hardware and other dependencies. Rather than being an entity

per se, an Environment is modelled as a semantic unit container

that belongs to an Object and is, therefore, subordinate to the

Object entity. The second environment-related semantic unit is

the “creatingApplication” that also is sub-ordinate to the Object

entity. Creating applications are outside the scope of an OAIS

repository and have therefore been historically treated separately

from other Environment descriptions. In a generic digital

preservation framework that is not restricted to OAIS use, but

supports the end-to-end digital preservation life-cycle, one

would describe Environments uniformly, no matter in what con-

text they are used. Our proposal prefers a solution that accom-

modates this view.

Its subordinate position to Objects means that Environ-

ments can only be captured to describe an Object’s computa-

tional context. This has the following limitations:

• Environments are too complex to be handled in an Object

repository.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

• Environments are rarely specific to a single Object, resulting

in their redundant spread across different Objects. This re-

sults in

o unnecessary verbosity;

o cumbersome management of Environment de-

scriptions as they evolve.

• They are unable to describe stand-alone Environments and

unable to be used for modelling an Environment registry

that describes Environment components without the need for

creating Objects.

• They are primarily applicable to computing environments

and do not include representation information in the broader

sense. This restricts the description to a technical level rather

than to a level that comprehensively enables redeployment.

Our use case analysis identified the five desirable relation-

ships illustrated in Figure 1. Because Environments are subordi-

nate to Objects, it is impossible to express the latter four of

them.

1. An Object specifies its Environment, i.e. its computational

context. This is the existing relationship in PREMIS 2.

2. An environment (for example, software source code) is to be

preserved as first-class entity in its own right. It is described

as Environment and takes on the role of an Object.

3. An environment is described as Environment and takes the

role of an Agent (for example, as software Agent involved in

a preservation action Event).

4. An environment is described as Environment and is related

to another Environment through inclusion, dependency, der-

ivation or other relationships.

5. An environment is described as Environment and has an

Event associated with it (for example, a creation or version-

ing Event).

Figure 1: The basic entities of the PREMIS Data Dictionary

(in blue) with the desired Environment entity and their rela-

tionships.

Another limitation is that in PREMIS 2, Environments are

unable to refer to external dedicated registries, which would

enable the delegation of "up-to-date and complete" information

to an external source if needed. The identified shortcomings may

be the reason that the Environment semantic container in

PREMIS is rarely used.

The goal of the PREMIS Environment Working group is to

rethink the metadata specification for environments. Their de-

scription must meet the improved understanding of how to en-

sure their longevity.

2.2 Related Work
The comprehensive conceptual model of the digital preser-

vation domain in Dappert and Farquhar [4] includes Environ-

ments, Requirements (including significant characteristics) and

Risks as first-order entities and justifies why this is beneficial.

There are also several efforts in the digital preservation

community to specify the metadata needs for certain aspects of

computing environments.

Specialised metadata has been defined to support the

preservation of software. For example, “The Significant Proper-

ties of Software: A Study” project [5, 6] identified Functionali-

ty, Software Composition, Provenance and Ownership, User

Interaction, Software Environment, Software Architecture and

Operating Performance as the basic metadata categories for

software that should be applied on Package, Version, Variant

and Download level. The Preserving Virtual Worlds project [7],

POCOS [8], SWOP [9] and DOAP [10] have made proposals

for software preservation metadata. Examples of software repos-

itories, the NSRL National Software Reference Library [11],

MobyGames [12] and AMINET [13] illustrate practically used

metadata schemas, but do not necessarily support digital preser-

vation functions. JHOVE [14], PRONOM [15], UDFR [16] and

the Library of Congress [17] have defined metadata that is need-

ed to technically or qualitatively describe file formats and have

built repositories based on their metadata descriptions. This

includes some software metadata specifications, which, for

PRONOM, are now available in a linked data representation and

for UDFR contains software description in the recently released

UDFR database [18].

There are metadata initiatives that address more complex

dependencies. The Virtual Resource Description Framework

(VRDF) [19] captures virtualized infrastructures; the Cloud

Data Management Interface (CDMI) [20] “describes the func-

tional interface that applications use to create, retrieve, update

and delete data elements from the Cloud”; and the Web Service

Definition Language (WSDL) [21] describes network services

as a set of endpoints operating on messages.

The KEEP project on emulation [22] designed a prototype

schema for the TOTEM database [23]. It is a recent move to-

wards building a repository for describing the technical proper-

ties of computing and gaming environments including software

and hardware components. The IIPC [24] has developed a tech-

nical database based on a computing environment schema as

foundation for web archiving, and TOSEC (short for “The Old

School Emulation Centre”) [25] “is dedicated to the cataloguing

and preservation of software, firmware and resources for micro-

computers, minicomputers and video game consoles.”

The TIMBUS project [26] addresses the challenge of digi-

tal preservation of business processes and services to ensure

their long-term continued access. TIMBUS analyses and rec-

ommends which aspects of a business process should be pre-

served and how to preserve them. It delivers methodologies and

tools to capture and formalise business processes on both tech-

nical and organisational levels. This includes preservation of

their underlying software infrastructure, virtualization of their

hardware infrastructure and capture of dependencies on local

and third-party services and information. This means that, in

addition to technical preservation metadata, it draws on metada-

ta standards that capture business processes, such as BPMN

[26], and identifies forms of supporting business documentation

needed to redeploy processes and services.

Environments correspond to the “Representation Infor-

mation” of the OAIS information model [2]. Representation

Information is “the information that maps a Data Object into

more meaningful concepts” [2]. Examples for a specific .docx

file would be its file format specification that defines how to

interpret the bit sequences, a list of software tools that can ren-

der it, hardware requirements, the language in which the con-

tained text is written, and context information that states the

author, purpose and time of its writing. Environments include

documentation, manuals, underlying policy documents, cheat

sheets, user behaviour studies, and other soft aids for interpreta-

tion.

3. MODELLING CHOICES
The following principles guided us through the modelling

choices:

• Ensure backward compatibility with the existing PREMIS

Data Dictionary,

• Ensure compliance with the OAIS information model,

• Provide straightforward Data Dictionary semantics that are

easy to implement and that can be implemented within the

existing XML Schema and PREMIS ontology,

• Provide clear mapping of historic Environment features to

the newly proposed ones.

• Permit an Environment instance to describe a physical item

such as software, hardware, a format, a document, a policy

or a process. It may or may not be in digital form. It may be

more or less concretely specified.

3.1 A Possible Solution
We propose to treat Environments as first class entities that

do not have the limitations listed in Section 2.1. Treating Envi-

ronments as first class entities also makes it more natural to

model preservation actions that directly impact Environments,

such as data carrier refresh or emulation, as easily as preserva-

tion actions that directly impact Objects, say migration. This is

particularly important for the preservation of computer games

and other kinds of software. While describing those actions is

possible with the PREMIS model in version 2, it is not doable in

a very natural way.

3.2 Supporting Different Verbosity Needs
Having a dedicated Environment entity gives implementers the

ability to make precise and complete descriptions that can be

shared with others. To ensure that all needed levels of descrip-

tion can be realised using the PREMIS 3 Data Dictionary, we

considered 3 description levels that were designed to match 3

different verbosity levels.

• The most concise: Full outsourcing to an external descrip-

tion. Here the implementer merely wants to point an Object,

or an Agent, to a description of its supporting Environment

available elsewhere, most likely in some technical registry.

This could be achieved by adding a linkingEnvironmen-

tIdentifier from the Objects and the Agents without main-

taining the resource that is being referred to.

• The intermediate one: A link is made between an Object or

Agent, and its supporting Environment. The Environment

instance is described and maintained in the repository, but

its components are summarised within its description, rather

than elaborated as individual Environments with precise de-

scriptions of all their semantic units that are then linked to

each other. This Environment description can be shared

across Agents and Objects, but its component descriptions

are not usable individually.

• The most verbose, and precise one: the Environment in-

stance is fully described as a network of modular compo-

nents, where each Environment is a separate instance. This

can be achieved by adding relationships between Environ-

ments.

New PREMIS semantic units for Environments should support

these description needs, and each more concise verbosity level is

built on the basis of the semantic units of the more verbose lev-

els. This way we can maintain a single consistent data dictionary

while allowing different levels of description.

3.3 Modelling a Catch-All Term Precisely
Depending on the context, “Environment” can refer to dif-

ferent things. Here are some examples:

• “This operating system only runs on a 64-bit environment”.

The environment is hardware, but it is a category consisting

of several hardware architectures.

• “This data object can be read on a European NES Games

Console environment”. Here the Environment is defined

precisely and integrates hardware (including cartridge and

controllers) and software (notably the BIOS) at the same

time.

• “This ePUBReader plugin requires Firefox 3.0 or later as an

execution environment”. Here the Environment merely ref-

erences software, without pointing to a precise version (all

Firefox versions above 3.0 are supposed to work).

These examples demonstrate the following characteristics:

• Environments can connect to other Environments and can

consist of related Environment components at lower levels

of granularity.

• Depending on the context, as determined by business re-

quirements, different environment subsets are relevant. An

Environment can be atomic, freely usable within other Envi-

ronments; but it can also be a set of running services that

achieve a defined purpose (e.g. render an object).

• Environments have a purpose. They allow objects to be

rendered, edited, visualised, or executed.

• Some Environments are generic; only the critical aspects of

the Environment are specified. Several versions of the Envi-

ronment or Environments with the same relevant behaviour

can be used in its stead.

• Others are specific, real-world instances that are being used

or have been used in the lifecycle of preserved Objects.

For capturing the connected nature of Environments, we decided

not to introduce a separate concept for “components”. Instead,

we treat Environments as entities that can be recursively defined

by logical or structural relationships of sets of other Environ-

ments. As with other kinds of aggregation, experience proves

that, in an implementation-dependent context, what is the top-

level entity and what constitutes components varies and results

in the choice of different subsets of Environments. Using a re-

cursively-defined Environment entity means that Environments

can be flexibly reused in order to create new Environments as

dictated by changing business needs. As we had stated that En-

vironments correspond to the “Representation Information” of

the OAIS information model, the recursively defined Environ-

ment entity forms a Representation Information Network.

3.4 Referring to External Registries
PREMIS evolved from an OAIS tradition. Its goal is to define

all preservation metadata that is needed to safeguard Objects

stored in an OAIS repository. This excludes events before the

Object is ingested into the repository and focuses on the preser-

vation of bitstreams, files and structurally related sets of them-

files, captured as representations. It was not intended that it

would take the role of a registry, where descriptions and defini-

tions are stored for reuse. Technical registries share with

PREMIS the aims of supporting “the renderability, under-

standability of digital objects in a preservation context” and of

representing “the information most preservation repositories

need to know to preserve digital materials over the long-term”.

Technical registries do NOT describe content “held by a preser-

vation repository”.

As the above examples show, for preservation purposes, an En-

vironment can be a generic description of technical or other

characteristics that intend to make the preservation task easier

for preservation repositories, but can be increasingly concrete to

the point where it would describe a concrete custom-tailored

environment for a specific repository. The two domains of regis-

try and repository touch. In a Linked Data implementation there

is an almost seamless continuum from the repository preserving

digital objects to the external environment descriptions in exter-

nal registries.

Adding the Environment entity broadens the scope of PREMIS.

It focuses no longer only on the Objects preserved in a reposito-

ry, but also on the representation information needed to render

or execute the Object. It captures its reticular nature and core

semantics with a new dedicated entity and its semantic units. In

the extreme, one could even imagine technical registries using

“premis:Environment” natively to describe standalone Environ-

ments without relating them to any Object or Agent.

3.5 Matching Environments to the Existing

Data Model
We propose to make Environment a new first-class entity so that

it can be described with its own semantic units. Therefore, we

need to match it to the existing data model, so that backwards

compatibility is maintained and so that it is clear when some-

thing should be described as an Object, an Agent or an Envi-

ronment.

In order to achieve reusability and varying levels of specificity

an Environment instance should describe its characteristics but

it should not state how it is used in an OAIS repository.

Within an OAIS repository an Environment can take three roles:

• It can take the role of representation information for an Ob-

ject so that the Object can be redeployed successfully in the

future (relationship 1 depicted in Figure 1).

• It can be preserved in the repository for example, to preserve

software or a computer game (relationship 2 depicted in

Figure 1).

• It can act as an Agent involved in an Event (or, less likely,

in a RightsStatement) (relationship 3 depicted in Figure 1).

The fact that an Environment takes on any of these roles is spec-

ified in the Object and Agent that captures this information.

That is to say that, for example, if an Environment component

describes an Agent that is involved in a preservation action

Event then a corresponding Agent instance should be created

and related to the Environment description. If an Environment

component is to be preserved, then a corresponding Object in-

stance should be created, the Environment’s content has to be

captured as an Information Package so that it can be considered

an Object, and the instance should be related to the Environment

description. If one wishes to merely specify the Environment as

representation information for an Object, then again, the Object

instance should be created and related to the Environment de-

scription.

3.6 Identifying Environments
As indicated in Figure 1, the solution for capturing Environ-

ments needs to specify how Environments are to be identified

and how other entity instances should link to them. PREMIS 2

offers several different ways of identifying and linking to entity

instances. The proposed solution should mirror them for con-

sistency’s sake. The existing approaches include:

• Linking to an entity instance through the identifier type and

value of the target instance:

linking[Entity]Identifier, to unambiguously link an instance of

one entity to an instance of another kind of entity, e.g. an

Object to an Event; these links can be particularised with a

linking[Entity]Role that allows one to specify the role of the

referred entity.

relationship, to unambiguously relate different instances of the

same entity, i.e. an Object to another Object. This relation-

ship must be particularised with a type and a subtype. Cur-

rently the type values “structural” and “derivation” are sug-

gested values in the Data Dictionary.

dependencyIdentifier, to relate an Object to a file that is needed

to support its delivery, e.g. a DTD or an XML Schema.

• Linking to an entity instance through a registry key:

formatRegistryKey, to relate a file or bitstream Object to a

description of its format in an external registry.

• Linking to an entity instance through a designation:

formatDesignation, to identify a format by name and ver-

sion.

An Environment as a PREMIS entity must define its identi-

fierType and identifierValue as all other PREMIS entities do.

PREMIS Environments are instances that can be linked to from

other entities using the premis:identifier mechanism through a

linkingEnvironmentIdentifier recorded in the linking Object,

Agent or Event (the linking relationships 1, 2, 3 and 5 depicted

in Figure 1 pointing towards Environment). For the bi-

directional relationships 2, 3, and 5 in Figure 1 one may use the

linking[Entity]Identifier from within the Environment entity to

identify related Objects, Agents or Events.

The question of whether Environment descriptions are stored as

separate Information Packages in the repository or whether they

must be stored together with the Objects or Agents whose role

they take should not be specified within the PREMIS Data Dic-

tionary since PREMIS is implementation independent. As with

all implementations, however, if the PREMIS identifier mecha-

nism is used, it must be guaranteed that it persistently and

uniquely identifies the entity.

We are proposing a variety of mechanisms for implementing the

relationship 4 depicted in Figure 1, which relates one Environ-

ment instance to another.

From within an Environment instance, one can refer to other

Environments, such as from the description of a software appli-

cation as Environment A to its operating system as Environment

B. This would take the form of a relatedEnvironmentIdentifier

link using the PREMIS identifier mechanism to capture struc-

tural, derivative and dependency relationships.

Additionally, from within a local Environment instance in a

repository one can refer to the corresponding (possibly, more

complete or more up-to-date) descriptions in other registries

(e.g. TOTEM or PRONOM). Here a premis:registryKey could

be used to refer to information about the description in an exter-

nal registry. Note that such a description does not imply identity

between the Environment descriptions in the repository and the

registry. Because of the sliding specificity of Environment de-

scriptions (see Section 3.3) it is almost impossible to assert that

two descriptions are identical. We assume that the referenced

Environment description in the registry has to be more generic,

and, therefore, can be inherited.

A further form of linking to an external Environment description

could be an Environment designation, consisting of name and

version. Additional specifications, such as the country of release

of the version can be used to identify the Environment precisely.

In order to allow referring to different, internal or external de-

scriptions of the same Environment at the same time, any form

of linking should be repeatable and combinable. Each use of a

linking mechanism should declare its role by some mechanism,

such as premis:registryRole or linking[Entity]Role.

3.7 Expressing Dependencies between Envi-

ronments
How Environments depend on each other so that they can be

run, is key preservation information, which has to be expressed

in the most satisfactory way possible. In PREMIS 2 dependen-

cies can be expressed in two places:

1. DependencyIdentifier is used to document a non-software

dependency between an Object and another Object, and uses

an identifier mechanism to link to the required object.

2. swDependency expresses the fact that a piece of software,

part of an Environment supporting an Object, relies on other

software to be executed. This swDependency semantic unit

is a “full text description” with no linking capability.

A gap analysis uncovered some areas for improvement. For

example, low-level software Environments, like operating sys-

tems, rely on hardware to run. There is no explicit possibility in

PREMIS 2 to document the nature of the dependencies. One can

loosely record a hardware and software description in the same

Environment container but not express the fact or the nature of

their dependence. Links to repository descriptions are currently

possible for file formats but not for other environment types.

Specification of versions are possible for software, but not for

hardware.

With the proposed PREMIS 3 change of Environment becoming

a first-class PREMIS entity rather than a semantic container in

the Object description, explicit linking mechanisms for describ-

ing dependencies can be used.

The existing ways of achieving the goal of expressing depend-

encies have to be simplified and re-factored so that they are as

easy to use (for implementers) and to maintain (for the PREMIS

Editorial Committee) as possible, while maintaining expressive-

ness.

PREMIS has a generic and powerful mechanism that allows

linking two descriptions and assigning a type to the link. The

two most generic semantic units are the linking[Entity]Identifier

and the relationship ones. They can both be used for linking

Environments, maintaining the existing pattern that the former

links two instances of different entities, and the latter links two

instances of the same entity. Thus:

• Whenever there is the need to express the fact that a pre-

served Object or an Agent relies on an Environment to run,

you use a linkingEnvironmentIdentifier mechanism;

• Whenever there is a dependency between two Environment

instances, a premis:relationship with a new relationshipType

of “dependency” can be used; this achieves the goal of the

previous swDependency, and allows other dependencies,

such as hardware dependencies, to be expressed as well.

This is in addition to the structural and derivative relation-

ships between Environments mentioned above. This imple-

ments the linking relationship 4 depicted in Figure 1.

• Whenever the dependency occurs between two Objects, the

premis:relationship mechanism with the new relation-

shipType of “dependency” can be used between their Envi-

ronments. This achieves the same purpose as the “dependen-

cyIdentifier” PREMIS 2 feature described above.

The other advantage of this mechanism is its extensibility: the

relationshipType and relationshipSubType semantic units’ rec-

ommended values in the Data Dictionary can be augmented.

This is important as we cannot foresee all the relationships that

can occur between Environments, which is a complex and

evolving area. An example of a large variety of dependency

relationships can be found in the Debian policy manual [28].

Using the relationship mechanism is a way to leave the door

open to other relationships that could be needed in the future.

Because of Environments’ highly interconnected, networked

nature, the Data Dictionary solution should enable all of these

linking and identification options.

3.8 Environments or Proxy Descriptions
When modelling Environments there is a decision to be made

what form and content this Environment should take. If it will

be preserved in an OAIS repository it will necessarily take the

form of a digital bitstream, file or representation. Software and

supporting documents, such as policy representations or manu-

als, can be captured directly in digital form as an Information

Package. Hardware, business processes or non-digital docu-

ments are inherently not (necessarily) represented digitally and

thus not directly subject to digital preservation as preservation

Objects.

Figure 2: Environment components as preservation Objects

In either case, the object can be reduced to a proxy digital de-

scription that can be preserved as an Object. This descriptive

environment metadata captures the physical object’s relevant

characteristics and contains all the information needed to rede-

ploy a corresponding environment component with these same

relevant characteristics in the future. This kind of environment

preservation through proxy descriptions is used in, for example,

business process preservation, as illustrated in the TIMBUS

project [26]. See Figure 2 for an illustration.

A functional software description or the specification “Adobe

Reader 5.0” can be considered instances of proxy descriptive

Environment metadata. It is not as concrete as the Adobe Reader

software composed of 0s and 1s, in the form of digital files that

are the actual physical Environment component. Either or both

could take the role of a premis:Object.

It is a business decision of the repository whether it preserves

the actual digital representation of the Environment and/or Envi-

ronment descriptive metadata as a proxy. This is a semantic

issue. As with other curatorial decisions, this cannot be pre-

scribed by the PREMIS data dictionary. But the eventual solu-

tion for PREMIS Environments must accommodate either use

and allow for the nature of the Environment description to be

specified.

3.9 Existing PREMIS Environment Descrip-

tions
Keeping the existing solutions for describing Environments in

PREMIS 2, the “environment” semantic unit and the “creat-

ingApplication” semantic unit, enables backwards compatibility

and, pragmatically speaking, offers convenient shortcuts and

reduced verbosity for the situations in which they suffice. The

PREMIS Environment working group does, however, feel that

we would recommend the new Environment entity above those

legacy semantic units.

4. USE CASE BASED DESIGN
The proposed solution is based on concrete examples rather than

abstract considerations. It was driven by and validated with use

case analysis. The working group validated that the modelling

decisions, which were taken in extending the expressive capaci-

ties of PREMIS beyond the sheer description of preserved Ob-

jects to representation networks, were applicable to real-world

examples.

Use cases should address all scenarios that implementers would

expect to implement using PREMIS 3 Environments. The fol-

lowing examples were chosen:

• Describing the environment that is used to render web ar-

chives in a particular institution, with all the pieces of soft-

ware that it bundles together to achieve this purpose;

• Describing the environment used in a normalization event;

• Describing the environment, including testbeds and docu-

mentation, used during TIFF to JPEG2000 migration;

• Describing an emulation environment for a Commodore 64

game preserved as an Object;

• Documenting the business processes in a multinational en-

terprise that operates in the cloud, and all the software and

hardware dependencies that allow them to be re-deployed in

the future.

The first two have been implemented in detail with a draft Data

Dictionary proposal. With their help, it is possible to illustrate

some of the features of the proposed Environment extension.

4.1 Use Case: Rendering Environments for

Web Archives
In the first use case, harvested web pages from the web archives

are rendered in the National Library of France’s reading room

Environment. A web page harvested in 2010 can not necessarily

be rendered on the reading room Environment of 2010. For

example, for a web page harvested in 2010 that contains an

EPUB file, this 2010 environment works for the HTML page.

But the Firefox 2.0.0.15 browser it includes does not support

EPUB files. The reading room Environment is upgraded in 2012

to an Environment that contains a newer version of Firefox that

supports the EPUBReader plugin that allows one to render the

EPUB file. In other terms, there was a need to describe these

two Environments, the fact that one Environment is superseded

by another, the different software components that they include,

and the dependency relationships between them.

The preserved Object and its history are described with the

PREMIS 2 standard features (Object, Event and Agent) as can

be seen in Figure 3. The Environments are described separately

and linked to from the Objects they support.

A new relationship type had to be introduced to state that

the old Environment was superseded by the newer one. This

information can, for example be used if the most current envi-

ronment becomes obsolete. A preservation professional may

choose to track superseded environments, which achieved the

same purpose, in the hope of detecting a by-now readily availa-

ble emulator of the older environment. This is an important

feature for hardware and software preservation. This was

achieved by a new relationshipType called “replacement”, with

relationshipsubTypes of “supersedes” or “is superseded by”.

Figure 3: Web archive use case

This use case highlights how the environmentPurpose and

environmentCharacteristics, familiar from the PREMIS 2 “envi-

ronment” semantic unit, should be treated. The former was

about the purpose an Environment wants to achieve towards a

particular object (e.g. create, render, edit) and the latter, about

the requirement that the Environment is intended to fulfil for a

particular object (e.g. minimum service required, known to

work). This should not be part of the Environment itself but part

of the relationship between an Environment and the entity (Ob-

ject or Agent) that it supports. This also increases the ability to

share descriptions since the same Environment described above

could potentially be used to achieve different purposes with

different requirements.

Figure 4 shows the components of those two Environ-

ments. Each component is an individual Environment, and bun-

dled into “aggregator” Environments. The aggregate mechanism,

allows components to be shared across different Environments.

For example, the Windows XP Service Pack 2 description is

shared by both Environments since they use the same operating

system.

Figure 4: Inclusion links between Environment platforms

and their component Environments

It also illustrates how one can link to a registry for addi-

tional descriptive information. Here, the Environment instance

“ark:/12148/c2” describes Windows XP with a particular service

pack; on the other hand, there is a description in PRONOM

about Windows XP “in general”, with no particular service

pack. In spite of this difference, adding this entry as a reference

can be useful since the PRONOM description is likely to evolve

and be enriched over time. A pointer to a repository should only

be used if the description found there is an exact match or more

generic and abstract than the Environment instance that links to

it, so that the link does not cause conflicts in the Environment

description.

Figure 5: A dependency network between Environments

However, Figure 4 does not express all the required infor-

mation. There is also the need to express the dependency rela-

tionships between the different components. Windows XP Pro-

fessional SP2, Firefox 10.0, and EPUBReader 1.4.1.0 are all

part of the same aggregator Environment, but they do not act on

the same level. EPUBReader, as an add-on, runs on Firefox

10.0, which in turn runs on Windows XP Professional SP2.

These dependencies were documented by using another

PREMIS relationship between the environments, as can be seen

in Figure 5.

These two different relationships have to be distinguished be-

cause they do not act on the same level and do not achieve the

same purpose. On the one hand, the whole/part structural links

between Environments and their components are about picking

Environment components to set up and bundle an Environment

platform for a particular purpose, and are thus specific to a par-

ticular repository and implementation. On the other hand, the

dependency relationships between the components are true

whatever the context is.

4.2 Use Case: Documenting an Environment

Used by a Normalization Service
In this use case, a QuickTime file with dv50 video and mp3

audio streams is submitted to a repository. Upon ingesting the

QuickTime file, the archiving institution normalizes the file into

a QuickTime file with mjpeg video and lpcm audio streams. A

normalization event is recorded, along with the web service and

software that performed the format conversion.

The derivation links between Objects, and their provenances are

described by standard PREMIS entities and semantic units. The

new feature is about the Agent description, which is a normali-

zation service with no further description. So the Agent is linked

to an Environment which describes what components are actual-

ly used by the service, e.g. libquicktime 1.1.5 with dependent

plug-ins. The whole description can be summarized in Figure 6

below.

Figure 6: Normalisation use case

The distinction between the Agent and the Environment that

executes it is important, if one wants to preserve an Agent so

that it could be re-enacted in different Environments, or if one

wants to track errors that have been discovered or link to an

external registry. To this end, one may need to document the

software components of which the Agent is built, along with the

different Events that have been performed by this Agent in a

repository. All this can be done by following the links between

those different entities. This example also shows that different

verbosity levels can be achieved depending on the implement-

er’s needs. While the web archives use case above used a very

thorough Environment network description, this normalization

example describes the execution Environment of an Agent more

concisely. All the dependent libraries are listed in a single envi-

ronmentNote semantic unit. However it shall be noted that a

more precise description could have been made if needed. In

such a case, there would have been a distinct Environment de-

scription for each component (the software application and all

its libraries), an inclusion link to an aggregator Environment

executing the Agent, and, finally, dependency relationships

between the libraries and the application. All depends on how

far a PREMIS implementer needs, or wants, to describe Envi-

ronments supporting the Objects s/he preserves or the Agents

s/he uses. This ability to fit different needs is one of the key

principles that guided this study.

5. CONCLUSION
The PREMIS Environment working group has been tasked with

rethinking how a computing Environment should be modelled

so that it meets the digital preservation community’s require-

ments. Several open issues are still being investigated. The anal-

ysis and proposed solutions discussed in this paper will be

brought to the PREMIS Editorial Committee and will be vali-

dated on community-provided use cases. Working within our

stated modelling principles, we hope that our proposed approach

not only meets contemporary registry preservation needs, but

also improves the interoperability between Environment regis-

tries that are being developed within the community. The work-

ing group has included representatives from the PREMIS [3]

Editorial committee, the TOTEM [21] technical registry, the

IIPC [24], DAITSS [29] and the TIMBUS [26] project, and has

received user requirements from New York University.

6. ACKNOWLEDGEMENTS
The authors wish to thank Michael Nolan, Martin Alexander

Neumann, Priscilla Caplan and Joseph Pawletko for their con-

tributions. Part of this work has been funded by the TIMBUS

project, co-funded by the European Union under the 7th

Framework Programme for research and technological develop-

ment and demonstration activities (FP7/2007-2013) under grant

agreement no. 269940. The authors are solely responsible for

the content of this paper.

7. REFERENCES
Websites were accessed on 8 May 2012

[1] Dappert, A., Enders, M. 2010. Digital Preservation

Metadata Standards, NISO Information Standards Quarter-

ly. June 2010.

http://www.loc.gov/standards/premis/FE_Dappert_Enders_

MetadataStds_isqv22no2.pdf

[2] CCSDS, June 2012. Reference Model for an Open Archival

Information System (OAIS): version 2. CCSDS 650.0-B-1,

Blue Book (the full ISO standard).

http://public.ccsds.org/publications/archive/650x0m2.pdf

[3] PREMIS Editorial Committee, 2012. PREMIS Data Dic-

tionary for Preservation Metadata, Version 2.2.

http://www.loc.gov/standards/premis/v2/premis-2-2.pdf

[4] Dappert, A., Farquhar, A. 2009. Modelling Organizational

Preservation Goals to Guide Digital Preservation,

Vol.4(2)(2009) of International Journal of Digital Curation.

pp. 119-134

http://www.ijdc.net/index.php/ijdc/article/viewFile/123/103

[5] Matthews, B., McIlwrath, B., Giaretta, D., Conway, E.

2008. The Significant Properties of Software: A Study.

STFC, December 2008. http://bit.ly/eF7yNv

[6] Software Sustainability Institute, Curtis+Cartwright. 2010.

Preserving software resources.

http://software.ac.uk/resources/preserving-software-

resources

[7] McDonough, J., et alii. 2010. Preserving Virtual Worlds.

https://www.ideals.illinois.edu/bitstream/handle/2142/1709

7/PVW.FinalReport.pdf?sequence=2

[8] POCOS. Preservation of Complex Objects Symposia.

http://www.pocos.org/

[9] SWOP. SWOP: The Software Ontology Project.

http://www.jisc.ac.uk/whatwedo/programmes/inf11/digpres

/swop.aspx and http://sourceforge.net/projects/theswo/files/

[10] Dumbill, E. 2012. DOAP- Description of a Project.

http://trac.usefulinc.com/doap

[11] National Software Reference Library (NSRL). National

Software Reference Library www.nsrl.nist.gov/,

[12] MobyGames. http://www.mobygames.com/

[13] AMINET. http://aminet.net/

[14] JSTOR and the Harvard University Library. JHOVE -

JSTOR/Harvard Object Validation Environment.

http://hul.harvard.edu/jhove/

[15] The National Archives: PRONOM.

http://www.nationalarchives.gov.uk/pronom/

[16] Unified Digital Format Registry (UDFR)

http://www.udfr.org

[17] Library of Congress. www.digitalpreservation.gov/formats/

[18] UDFR. UDFR ontology. http://udfr.org/onto/onto.rdf

[19] Kadobayashi, Y. 2010. Toward Measurement and Analysis

of Virtualized Infrastructure: Scaffolding from an Ontolog-

ical Perspective. http://www.caida.org/workshops/wide-

casfi/1004/slides/wide-casfi1004_ykadobayashi.pdf,

[20] SNIA. Cloud Data Management Interface (CDMI)

http://www.snia.org/cdmi

[21] W3C. 2001. Web Services Description Language (WSDL)

1.1. www.w3.org/TR/wsdl

[22] KEEP (Keeping Emulation Environments Portable).

http://www.keep-project.eu/ezpub2/index.php

[23] TOTEM database. Welcome to TOTEM - the Trustworthy

Online Technical Environment Metadata Database.

http://keep-totem.co.uk

[24] IIPC Preservation Working Group.

http://netpreserve.org/about/pwg.php

[25] TOSEC (The Old School Emulation Centre). What is

TOSEC. http://www.tosecdev.org/index.php/the-project

[26] TIMBUS project. http://timbusproject.net

[27] Object Management Group. 2011. Business Process Model

and Notation (BPMN). Version 2.0. Release date: January

2011. http://www.omg.org/spec/BPMN/2.0/PDF

[28] Debian. Debian Policy Manual. Chapter 7 - Declaring rela-

tionships between packages. Version 3.9.3.1, 2012-03-04.

http://www.debian.org/doc/debian-policy/ch-

relationships.html

[29] DAITSS. http://daitss.fcla.edu/

