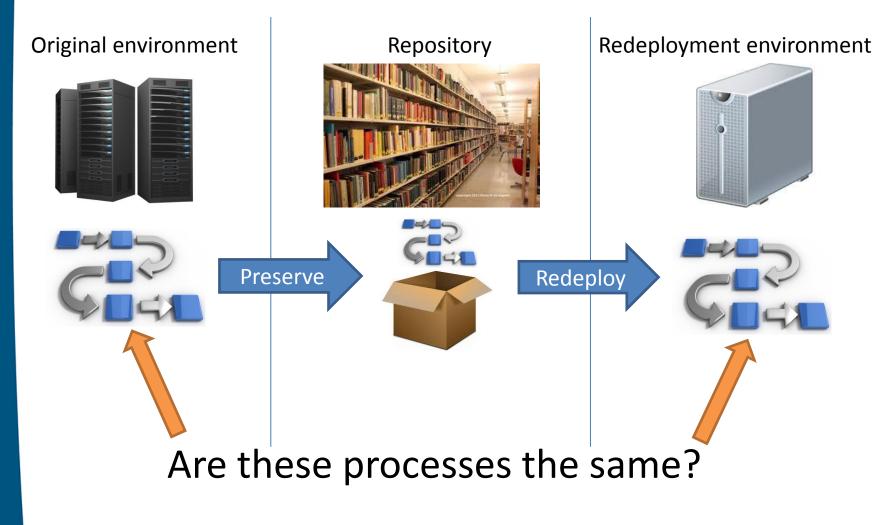
Framework for Verification of Preserved and Redeployed Processes

Tomasz Miksa

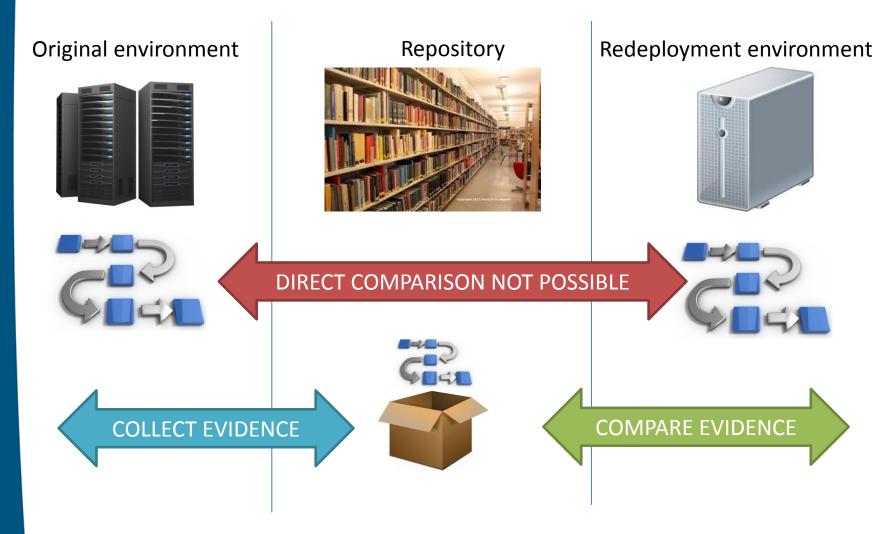
Stefan Pröll, Rudolf Mayer, Stephan Strodl, Ricardo Vieira, Jose Barateiro, Andreas Rauber



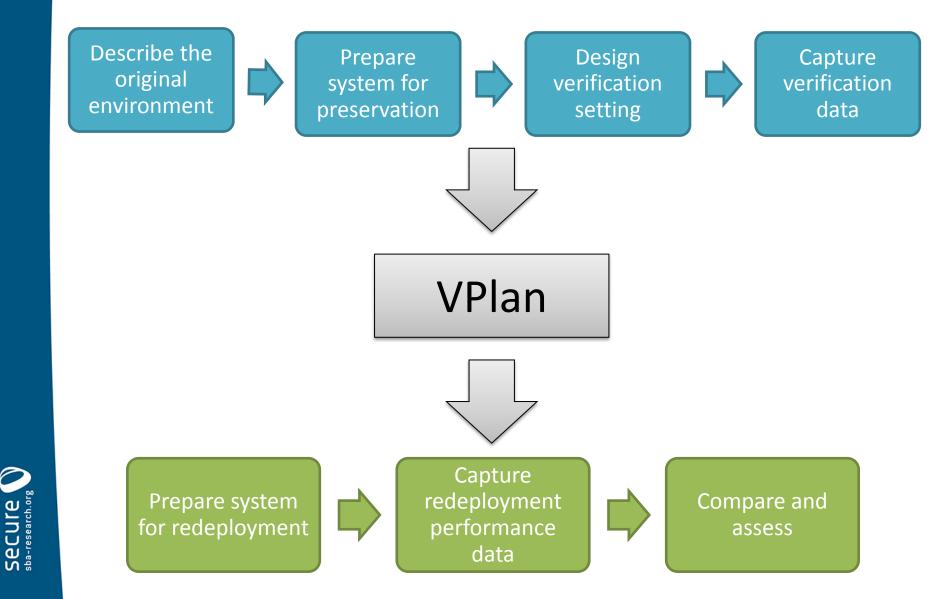
Agenda

- VFramework
 - Relation to process preservation
 - Objectives
 - Framework steps
- Experiment
 - Use case
 - Application of the VFramework
 - Results
- Conclusions

Process preservation - VFramework



- Objectives
 - assess redeployed processes in view of users requirements
 - collect evidence
- Independent of
 - the purpose of the redeployment
 - e.g. litigation case, rerun of scientific experiment
 - the ways of process specification
 - e.g. workflows, verbal description
 - the drivers for their preservation
 - e.g. legal obligations, good practice



- Independent of
 - the preservation strategies applied
 - to the whole process or to its parts
 - e.g. migration, emulation, etc.
 - the redeployment environments
 - What external components are available?
 - How does the new platform differ?
 - the type of redeployment
 - full
 - partial

Secure Search.org

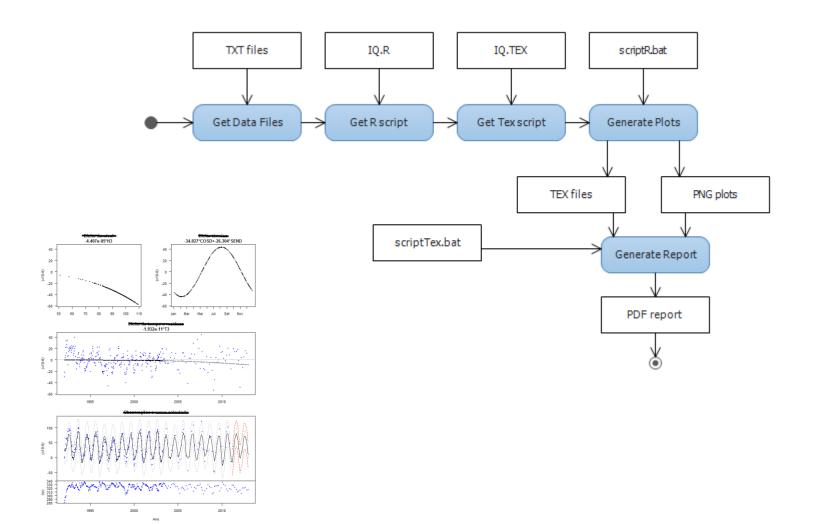
Agenda

- VFramework
 - Relation to process preservation
 - Objectives
 - Framework steps

• Experiment

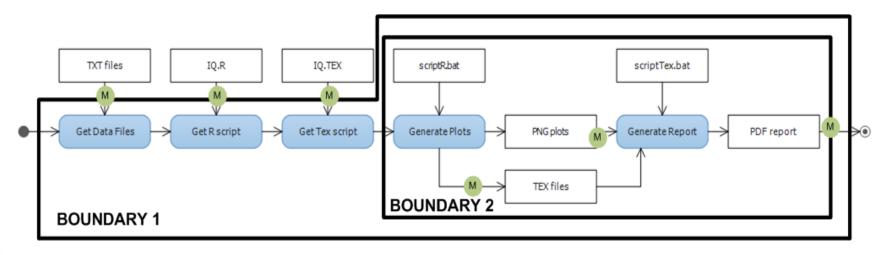
- Use case
- Application of the VFramework
- Results
- Conclusions

Experiment – use case


- eScience process
 - civil engineering domain
- Long term sensor data analysis
- Used to make predictions
- Process needs to be rerun
 - with new datasets
 - with new parameters

• Process performed manually by scientists

Experiment – use case


Experiment

- Simulation of obsolescence by redeployment in a different environment
 - Original: Windows
 - Redeployment: Linux
- Two scenarios
 - Full process redeployed
 - Part of the process redeployed

Experiment

- Defined, collected and compared
 - Process boundaries
 - Significant properties
 - Measurement points and levels of comparison
 - Metrics

Example – verification setting

ID: R3.5	Name: Graphical Representation			
Significant property: The system must provide graphical				
representation of the following concepts:				
• Residuals vs. Fitted,				
 normal Q-Q, 				
• Scale-Location,				
Cook's distance,				
Residual vs. Leverage,				
Cook's dist. vs. Leverage				
Boundary: 1 and 2				
Measurement point: M4 (PNG file which is an output of Generate				
Plots step)				
Level of comparison: Rendered form				
Metric Target Value				
Resolution	Exact			
Colour space	Exact			
Histogram	Exact			

Example – collected data

ID: R3.5	Name: Graphical Representation				
Metric	Target Value	Original environment	Redeployment environment	Fulfilled	
Resolution	Exact	37.8x37.8	37.8x37.8	Yes	
Colour space	Exact	sRGB	sRGB	Yes	
Histogram	Exact	#Values	#Values		
		(0,162,232,255)	(0,162,232,255)		
		#00A2E8	#00A2E8	Yes	
		srgba(0,162,232,1)	srgba(0,162,232,1)		
		(0,162,236,255)	(0,162,236,255)		
		#00A2EC	#00A2EC	Yes	
		srgba(0,162,236,1)	srgba(0,162,236,1)		
		(0,162,237,255)	(0,162,237,255)		
		#00A2ED	#00A2ED	Yes	
		srgba(0,162,237,1)	srgba(0,162,237,1)		

Experiment - Results

- Compared processes in significantly different environments
- Compared fully and partially redeployed processes
- Compared modified processes
- Collected trustworthy evidence
- Proved that the redeployed process is correct
- Demonstrated applicability of the VFramework

Conclusions

- VFramework
 - allows to compare processes
 - provides evidence needed for verification
 - guides the user through the verification process
 - is general enough to be applicable in many scenarios
 - is precise enough to ensure comprehensiveness of the evidence collected
- VFramework is applicable to eScience processes

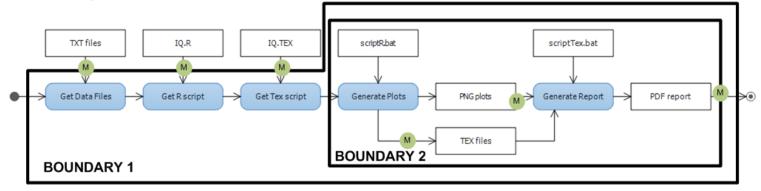
On-going work

- Automation of process characteristics extraction
- VPlan development
 - based on OWL ontology
 - allows to aggregate information about process without redundancy
- Application to further use cases
 - eHealth domain

Thank you!

TIMELESS BUSINESS

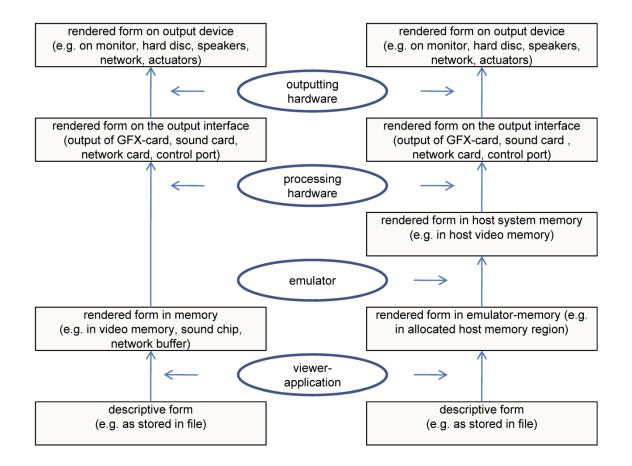
Auxiliary slides



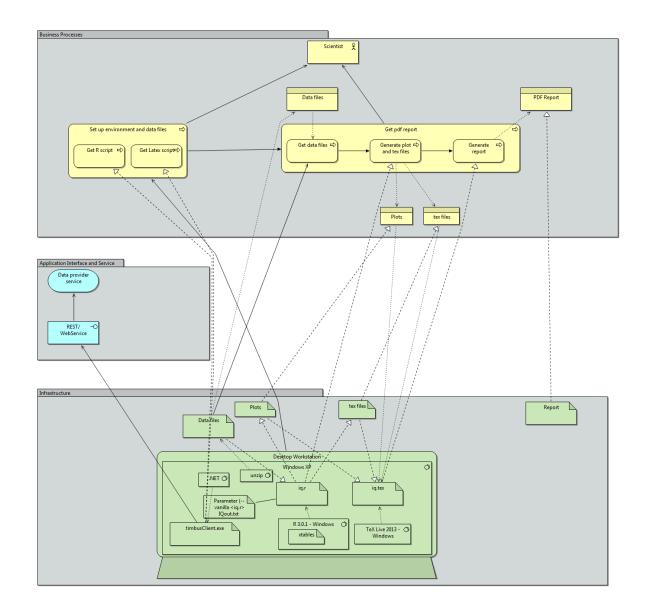
- 1. Describe the original environment
- 2. Prepare system for preservation
- 3. Design verification setting
- 4. Capture verification data
- 5. Prepare system for redeployment
- 6. Capture redeployment performance data
- 7. Compare and assess

Process boundaries

- Specify which components belong to the process
- Depends on
 - redeployment scenario
 - access to components
- Must be precise



Measurement points and metrics


- Specified for each of considered scenarios
- Measurement points
 - points of the process where data enabling reasoning about correctness of the process execution is collected
- Metrics
 - tangible and measurable metrics derived from significant properties
 - Must have their target value specified (e.g. equals original, not less than..., etc.)

Levels of comparison

