Assessing Digital Preservation Capabilities Using a Checklist Assessment Method

Gonçalo Antunes*, Diogo Proença, José Barateiro, Ricardo Vieira, José Borbinha INESC-ID Information Systems Group, Lisbon, Portugal {goncalo.antunes, diogo.proenca, jose.barateiro, rjcv, jlb}@ist.utl.pt Christoph Becker Vienna University of Technology Vienna, Austria becker@ifs.tuwien.ac.at

Context

- Digital Preservation has mainly been driven by memory institutions
- However, the problem is already being acknowledged by organizations from different walks of life
- In many of these organizations the repository approach is not applicable
- In this scenarios, DP is seen as a desirable property of information systems

Traditional Scenario: Digital Preservation as a System/Service

Alternative Scenario: Digital Preservation as a Capability

Business Support	Digital Preservation
System	Capability

Problem

- Several DP assessment methods are currently available, however their application in nontraditional DP scenarios is difficult due to the assumption that a repository is present
- There is a need for an assessment method that is able to determine the DP capabilities of the information systems of an organization

Proposal

- This work proposes a checklist assessment method based on the capability-based reference architecture
 - Based on the DP assessment methods already existing, but reworked and aligned with the capability approach
- Contains sets of criteria organized per capability
- Allows performing gap analysis and capability level

DP Capabilities

- A capability is an ability realized by a combination of elements
 - actors, business functions and business processes, and technology
- A capability -based Reference Architecture (RA) for DP was defined in the context of the SHAMAN project
 - RA's have the aim of capturing domain-specific knowledge and integrate it in a way that it can be later reused for developing new system architectures

DP Capabilities

Capability		
CDC	GC1. Governance	
GRU Conshilition	GC2. Risk	
Capadinties	GC3. Compliance	
	BC1. Acquire Content	
Business	BC2. Secure Bitstreams	
Capabilities	BC3. Preserve Content	
	BC4. Disseminate Content	
	SC1. Manage Data	
Support	SC2. Manage Infrastructure	
Capabilities	SC3. Manage HR	
	SC4. Manage Finances	

Assessing DP Capabilities

- With the detailed description of capabilities provided, it becomes possible to assess concrete scenarios for the existence of capabilities
- The assessment is possible through the use of a checklist and a method

The Assessment Checklist

- The checklist is divided in three main sections, one for each top-level capability (GRC, Business, and Support)
- Then, these sections are divided into their constituent sub-capabilities
- The compliance criteria are based on references of the area of DP
 - Repository-specific criteria were reworked and generalized in order to widen the scope of application to all types of information systems

The Assessment Checklist – Risk Capability Criteria Example

GC2	Risk	
GC2.1	The organization has ongoing commitment to analyze and report on risk and benefit (including assets, licenses, and liabilities).	X
GC2.2	The organization has a documented change management process that identifies changes to critical processes that potentially affect the organization and manages the underlying risk.	0
GC2.3	The organization has a process for testing and managing the risk of critical changes to the system.	X
GC2.4	The organization has a process to react to the availability of new software security updates based on a risk-benefit assessment.	X
GC2.5	The organization maintains a systematic analysis of such factors as data, systems, personnel, physical plant, and security needs.	X
GC2.6	The organization has implemented controls to adequately address each of the defined security needs.	X
GC2.7	The organization has suitable written disaster preparedness and recovery plan(s), including at least one off-site backup of all preserved information together with an off-site copy of the recovery plan(s).	0

The Assessment Checklist

- This checklist is available as a spreadsheet, allowing two methods for calculating the compliance level:
 - Automatic, which is a linear method;
 - Custom, in which we can define the weights for each criterion
- Each capability group is measured from 0% to 100% of compliance
- Then, each sub-capability has a maximum percentage which in the custom evaluation method can be defined

The Assessment Checklist -Configuration

Capabilities	Weights	
GC	100	
GC1	50	
GC1.1		5
GC1.2	50	15
GC1.3		10
GC1.4		15
GC1.5		5
GC1.6		0
GC1.7		0

Levels			
Lavala	Percentage		
Levels	Min.	Max.	
1	0	25	
2	26	45	
3	46	65	
4	66	80	
5	81	100	

Percentage	Level	Target	Difference
0,00	1	5	-4
0,00	1	4	-3

Application of the Checklist Assessment

- Two scenarios involving e-Science data
 - High-energy physics (experimental data)
 - Civil engineering (observational data)
- The assessment was performed after meetings explaining the issues surrounding the preservation of e-Science data and the RA
- The involved stakeholder were then asked to perform the assessment

Application of the Checklist Assessment – High Energy Physics

Application of the Checklist Assessment – Civil Engineering

Conclusions

- This article presented and evaluated a checklistbased method for capability assessment in digital preservation
- The implications of the logical preservation of data are not well known in the analyzed institutions, despite the existence of bitstream preservation capabilities
- The level of the governance and compliance capabilities which indicates that the issue is mainly seen as a technological issue

Thank You

• Questions??

DP Capabilities

