
Framework for Verification of Preserved
and Redeployed Processes

Tomasz Miksa
Stefan Pröll

Rudolf Mayer
Stephan Strodl

Secure Business Austria
Vienna, Austria

{tmiksa, sproell, rmayer,
sstrodl}@sba-
research.org

Ricardo Vieira
José Barateiro

INESC-ID Information Systems Group
& LNEC

Lisbon, Portugal
{rjcv, jose.barateiro}@ist.utl.pt

Andreas Rauber
Vienna University of Technology

& Secure Business Austria
Vienna, Austria

rauber@ifs.tuwien.ac.at

ABSTRACT
Preserving processes requires not only the identification of
all process components, but also the interception of all inter-
actions of the process with the external influencers. In order
to verify if the collected data is sufficient for the purpose of
redeployment, as well as to verify that the redeployed pro-
cess performs according to expectations, a framework for
verification is needed. This paper presents a framework
for verification of preserved and redeployed processes. We
demonstrate the applicability of the framework on an use
case from the eScience domain. The preservation and the
redeployment of the eScience process is tested by migrating
it to substantially different environments.

1. INTRODUCTION
Traditionally, research in the area of digital preservation
deals with preservation of static information like documents,
scans, and other kinds of data. The long term preservation
of entire systems and processes was not in the centre of at-
tention. Addressing this new challenge requires advanced
methods and processes which ensure that the process con-
text is described adequately. This includes the collection of
sufficient information of all involved components, which en-
ables future redeployment. No matter how well-engineered
the process for preservation of processes is, it cannot guar-
antee that all necessary information required to run the pro-
cess was recorded. Given the complexity of preserving entire
systems and processes, we thus need to derive means for reli-
ably verifying whether a process being re-deployed performs
correctly according to preservation goals. We need to en-
sure that not only sufficient information is collected during
planning and preserving of the process, but also to confirm
that the redeployed process performs according to the ex-
pectations of the redeployment scenario.

The verification of redeployed processes is a complex task
which may vary in its form due to several factors: the way
the processes are specified, the drivers for their preservation,
the preservation strategies applied; the reasons for the rede-
ployment, the redeployment environments, etc. However,
regardless of these differences, all processes must be verified
for measuring the success of the redeployment. Otherwise,
there is no guarantee that the process running in the rede-
ployed environment is the one which was meant to be rede-
ployed. Such evidence is crucial in litigation cases when the
correctness of the original process, executed at some time in
the past, could be questioned, and the only way to check this
is to re-run the original process. In such cases, the method
for verification of redeployed processes should provide ir-
refutable evidence that the redeployed process is behaving
exactly the same way as the original. On other perspective,
in the domain of eScience [7] and Research Infrastructures
[11], where scientists make scientific discoveries by creating
and constantly improving the processes for transforming Big
Data [10], the verification of redeployed processes is essen-
tial. It enables researchers to verify their results, or apply
previously used models on new data.

In this paper, we present the VFramework which is a frame-
work for verification of preserved process. It is a refinement
of a conceptual framework presented in [6]. It consists of
7 steps that describe the key actions which have to be per-
formed in order to verify any kind of redeployed process.
The VFramework can be applied not only to fully rede-
ployed processes but is also capable of evaluating partial
redeployments. Moreover, the VFramework can also ver-
ify both identical and re-engineered processes. We present
an application of the VFramework for verification of a rede-
ployment of an eScience process in the domain of sensor data
analysis, which was extracted from its original environment
and was redeployed in various environments different from
the original one. The VFramework was applied to assess
these redeployments.

The paper is organized as follows. Section 2 presents the
state of the art. In Section 3 the steps and requirements set
to the VFramework are described. Section 4 describes the
application of the VFramework to the use case. We provide
conclusions and future work in Section 5.

2. STATE OF THE ART
In [6] a conceptual framework for evaluation of emulation
results was presented. It was demonstrated in [5], that the
framework can be successfully applied to evaluate the con-
formance and performance quality of applications and pro-
cesses redeployed in an emulator. This was demonstrated on
case studies in which the framework was used to evaluate the
emulation of a video game and an accounting program. The
VFramework presented in this paper is a refinement of that
framework for complex, potentially distributed processes. It
provides detailed specification of actions which have to be
performed for verification of redeployed processes.

In ISO 12207 [2] the life cycle processes for systems and
software were defined. ”It contains processes, activities, and
tasks that are to be applied during the acquisition of a soft-
ware product or service and during the supply, development,
operation, maintenance and disposal of software products”
[2]. It does not consider the redeployment as a part of the life
cycle and hence provides no guidance for the scenario con-
sidered in this paper. The standard defines also the Software
Specific Processes and lists actions which are needed for the
Software Verification Process and the Software Validation
Process. However, these processes belong to the Software
Support Process category which assists the software imple-
mentation process. As a consequence, these processes are
highly coupled with the software development, what is not
in the scope of our investigations. Summing up, ISO 12207
does not specify a process for verification of redeployed soft-
ware processes as presented in this paper.

The IEEE 1012 standard [1] specifies a process for soft-
ware verification and validation. This process addresses the
following software life cycle processes: acquisition, supply,
development, operation and maintenance. It is compati-
ble with ISO 12207. It defines tasks, required inputs and
outputs to conduct verification and validation (V&V) of the
software at all aforementioned life cycle processes. The V&V
process for the maintenance process considers migrations to
other environments. This overlaps with some of the require-
ments we set to the framework for verification of redeployed
processes (see Section 3), i.e. the system is migrated to the
other platform when the original system is still available.
However, it does not consider the situation when the system
or the process is disposed, deposited and redeployed after
some time. Furthermore, the standard specifies only a high
level list of activities applicable in several maintenance sce-
narios which are rather focused on verification and validation
of the activities performed to keep the system running (e.g.
system updates, bug fixing, enhancements to the function-
ality), rather than on digital preservation scenarios. The
VFramework proposed in this paper provides more detailed
guidance and can be applied to a broader range of digital
preservation scenarios.

3. VFRAMEWORK
The VFramework was created to verify that a redeployed
process performs according to expectations. There were two
main requirements set to the framework.

Firstly, the framework has to be independent of the situation
in which different digital preservation actions were applied
to the full process or to different parts of the process. In

such situations some of the process’ parts may be substi-
tuted, re-engineered, emulated, migrated, etc. As a result,
the redeployed process which is to be verified is not neces-
sarily an exact copy of the original process. The framework
has to be capable of verifying the execution of similar pro-
cesses or their parts. By similarity of processes we mean a
situation in which the functionality or characteristics of the
process have been altered, but the deviation is either desired
(e.g. faster computation) or acceptable (e.g. some function-
ality is limited but for the purpose of redeployment it is not
required). Such situations may be an inevitable side effect
of the digital preservation actions or a consequence of delib-
erate actions (e.g. improved implementation of the process).
The framework has to support such situations regardless of
its origin, and be capable of evaluating full and partial re-
deployments of processes.

Secondly, due to the high variety of the nature and imple-
mentation of the processes and a wide range of potential
user requirements that had to be considered, the framework
has to be flexible to cover all these requirements and set-
tings. Therefore it has to remain at a relatively high level
of abstraction and be customizable for the concrete pro-
cesses which are going to be preserved. The guidance on
customization has to be provided by the framework in order
to achieve the comprehensiveness of the process verification.

The VFramework is depicted in Figure 1 and it consists of
two sequences of actions. The first one (depicted in blue) is
performed in the original environment. The results of the
execution of each of the steps of this sequence are stored
into the VPlan. The VPlan is a machine readable document
in which all of the information about the original environ-
ment is kept. The second sequence (depicted in green) is
performed in the redeployment environment. The necessary
information for completion of each of the steps is obtained
from the VPlan.

Original environment denotes the system in which the pro-
cess, which is going to be preserved, is deployed and oper-
ates. The redeployment environment is the system in which
the process will be installed once the decision to redeploy the
preserved process is taken. It is very likely, that the rede-
ployment will take place at some distant time in the future,
when the original platform does not exist anymore and the
process may need to be re-engineered to fit it into the new
system.

Apart from descriptive metadata, the VFramework uses two
kinds of data: verification data and redeployment perfor-
mance data. The verification data is collected during the
execution of the process in the original environment. It pro-
vides information on details of the execution of process in-
stances, focusing on measuring significant properties. Inter-
actions with external components have to be stored as well.
For this purpose, external interaction data being part of
verification data is collected. This external interaction data
represents a record of all interactions of the process with
external components during the execution of a specific pro-
cess instance in a scenario to be used for verification. This
data is reapplied in the redeployment environment to ensure
determinism, by recreating the same external interactions.
The redeployment performance data is collected during the

execution of the process in the redeployment environment.
It provides information on details of the execution of the
process instances, focusing on measuring significant prop-
erties. It is used for comparison with verification data to
assess the redeployment. The steps of the framework are
described below.

1. Describe the original environment The aim of this
step is to describe the process and document its context
by identifying environment dependencies in which the pro-
cess is deployed. As motivation for the preservation of the
process, considered redeployment scenarios and a set of ex-
ample instances to be used for verification are determined.
This corresponds largely to steps 1-3 of the ”Define Require-
ments” phase in preservation planning [4], with the first step
being subdivided into two more fine-grained steps.

1.1 Describe the process The information should describe
the process itself but also the context in which the original
process operated. A detailed description of not only software
and hardware requirements, but also legal aspects is needed.
Such information can be provided in multiple forms. One of
them could be the context model [8], which is an ontology
based model for description of processes and their depen-
dencies.

1.2 Define set of potential redeployment scenarios
The purpose of the redeployment has to be defined. This
information has significant impact on the process of verifi-
cation, because it impacts the type of measurements and the
results they are supposed to fulfil. For example, different re-
quirements are set to the process which is supposed to be an
exact copy of the original process redeployed for a purpose
of litigation case when the correctness of the original process
has to be proven and therefore the redeployed process is veri-
fied for being identical. Different requirements are set to the
eScience process which is redeployed with some of its parts
substituted with components of the same functionality but
improved quality (e.g. faster computation, more accurate
results, etc.). In such cases some of the measurements may
be ignored or interpreted differently, e.g. accuracy of results
should not be worse than the original, but does not need to
be exact. Verification focuses in this case on ensuring the
functionality is achieved, but the significant properties re-
lated to part where the changes were introduced should be
treated differently.

1.3 Select process instances to be used for verifica-
tion Process may have several execution paths and therefore
instances of the same process may vary considerably. In this
step, the instances of the process which will be used for ver-
ification are selected. They have to be chosen according to
the considered redeployment scenarios. The instances se-
lected at this step will be used to collect both verification
data from the original environment, as well as the perfor-
mance redeployment data. The description of selected in-
stances should specify in a comprehensive way all actions
which were performed when running the process. These
could be depicted by sequence diagrams, activity diagrams,
use case diagrams, textual description, etc. The way it is
specified depends on the level of automation of the process,
e.g. if it is a manual process or formally specified in BPMN
or executed within a workflow engine. Furthermore, the val-

ues of all parameters and input values must be documented.

1.4 Identify significant properties to be preserved
The significant properties which have to be preserved and
then evaluated have to be specified. They can either be col-
lected at this step or obtained from preceding activities, e.g.
preservation planning. However, regardless of the source,
it is important that the significant properties reflect both
functional and non-functional requirements of the process.
It is important to determine which significant states of the
object are to be measured as the significant property. These
significant states could be: target state, continuous stream
or series of states.

2. Prepare system for preservation The aim of this
step is to identify the interactions of the process, i.e. all
inputs and outputs of the process, but also configurations
of process parameters, as well as influences of other com-
ponents sharing the process environment or used indirectly
by process components. This information is needed in order
to ensure deterministic execution of the process and thus
ensure reliable assessment. The steps should be conducted
in view of redeployment scenarios and significant properties
defined for the process.

2.1 Determine process boundaries The process bound-
ary specifies which elements belong to the process and which
elements belong to the external environment in which the
process operates. It is possible to define different process
boundaries depending on the scenarios for redeployment.
For example, if the scenario assumes redeployment of only a
part of the process which will be fitted into another process,
then only the redeployed parts of the original process are
within the boundary. However, there may be a second sce-
nario in which the full process is redeployed, then a second
boundary has to be defined which covers the entire process.
Boundaries may also be influenced by the degree of control
one can exert on specific components (e.g. external web
services) and their importance for redeployment as well as
their stability. In all cases, the description should ensure
that the process boundaries are specified clearly, i.e. a dis-
tinction between elements which are part of the process to
be preserved and which are external services with which the
process exchanges data has to be made. This is particularly
important in case of distributed processes which are using
the Service Oriented Architecture for their implementation,
or those deployed in the Cloud.

2.2 Determine external interactions For each of the
specified boundaries the external interactions have to be
identified. External interactions denote situations in which
elements within the process boundary interact with elements
from outside of the boundary. External interactions may be
critical for the correct execution of the entire process, be-
cause any changes in the external components may cause
changes in process execution. For example, the web ser-
vice which provides data for one of the process steps may
change (change of interface, implementation of algorithms,
etc.) or become unavailable [9]. As a result, the process can
perform differently (providing different outputs) or cannot
run anymore. Another example could be encryption and the
necessity to access an authentication service. When the cer-
tificate is not available anymore, then the communication

Figure 1: VFramework - framework for verification and validation of preserved business processes

cannot take place unless the authentication is removed (if
the redeployment scenario allows this).

Special attention has to be paid to indirect external inter-
actions and consequences for the process which might not
always be visible at the first sight. For example the oper-
ating system if not included within the process boundary,
its version and all system updates may alter the execution
of the process. For all the requirements which focus on the
visual presentation, the installed fonts, appearance settings,
colour schemes of the system may be such influencers. Other
digital objects which coexist in the system may also have
impact. For example, processes running in the background
(e.g. virus scan software, remote desktop software) can sig-
nificantly affect the performance of a system. Moreover,
other processes may share common data with the examined
process and may modify the data that may result in the
non-deterministic execution of the analysed process. Fur-
thermore, all user or system I/O (e.g. keyboard, network,
specific hardware components such as system clock, etc.)
that are outside the process boundaries need to be identi-
fied.

2.3 Determine internal interactions The process may
consist of several components which have their own settings.
All these settings must be determined at this step. Further-
more, some of the process components depend on further
software tools or libraries which may vary in version or set-
tings. Some examples of these could be: virtual machines,
database software, libraries, software device drivers, fonts,
codecs, etc. The detected versions of components have to
be verified to detect if the versions have not been modified
or customized. If some of them were modified (e.g. modi-
fied config files) and this has an impact on the process, then
they have to be preserved as well. Besides the software de-
pendencies, the underlying hardware has to be considered
when searching for potential internal interactions. The pro-
cess may depend on some proprietary and unique hardware
equipment or the underlying hardware may have some spe-
cific implementations of algorithms affecting the results ob-
tained in the process. For example, some of the hardware
bugs may affect the results delivered by the process. These
results will only be achievable on a particular hardware plat-
form (e.g. well-known Pentium FDIV bug had an impact on
the results of floating point calculations, and therefore could
alter the results of the whole process upon correct redeploy-
ment).

2.4 Ensure deterministic behaviour To allow verifica-
tion of redeployment we need to ensure that a process per-
forms deterministic. Thus, all interaction identified in 2.2
and 2.3 need to be verified for completeness to ensure de-
terministic re-execution. If this is not possible within the
generic process, adaptations have to be made specifically
for verification. If the determinism cannot be ensured, the
verification of processes is not very likely to be possible.
The investigation of determinism of the process should be
conducted in view of considered redeployment purposes. In
some settings, some of the non-deterministic influencers are
affecting measures which are not important for the purpose
of the redeployment. For example, when the exact execu-
tion speed is not considered a significant property, then all
of the non-deterministic influencers regarding this particular
criterion do not have to be considered.

When one of the process steps exchanges data with some
third party component (external interaction), the communi-
cation can be recorded and replayed in the redeployment en-
vironment. If the process depends on the component which
affects determinism of the process, it may be possible to
substitute the component with a mock-up which does not
have this deficiency. An example of such a solution for web
services can be found in [9], if one of the steps of the non-
deterministic process depends on a random number genera-
tor, then it may be substituted with a mock-up which always
provides the same sequence of values as the one recorded and
thus the process becomes deterministic. Of course, such
changes to the process must be documented and possibly
reverted after the verification process is finished in the ac-
tual redeployment, but for the purpose of verification they
should be present.

3. Design verification setting The aim of this step is
to identify the measurement points of the process, specify
metrics used to assess quality of preservation actions and
couple them with thresholds which are used as criteria for
the assessment. The measurement points can be defined as
points of the process where data enabling reasoning about
correctness of the process execution is collected. The inves-
tigation should be conducted in the view of redeployment
scenarios and significant properties defined for the process.

3.1 Specify measurement points Measurement points
for both internal and external interactions must be described
unambiguously and precisely, because the given value can

be measured in different ways and in different parts of the
process and therefore not always the same values may be ob-
tained. For example, the output of a process that transforms
some images into PNG files is selected as a measurement
point. This seems to be a clear requirement but without
explicit definition of what is exactly measured the results
may vary, because the bit streams which write the PNG file
to the disk can be compared on the fly or the files already
written to the disk can be opened and analysed by image
recognition algorithms. In the first case, different libraries
may have been used to transform the image (e.g. library
was replaced in the redeployment) and as a result the out-
puts may be different at the bit level, while in the case of
image recognition algorithms the images may turn out to
be identical. Both approaches are valid and can be used.
As the example shows, the choice of the measurement point
depends on the requirements and intentions of the future
redeployment. We thus need to identify, for each significant
property of the process, on which level these must be cap-
tured. According to [6], the core levels are (1) bit level file
storage, (2) the rendering of an internal state in a the system
memory, (3) memory of an output device (e.g. video card
memory (virtualized or real)), (4) port communication (e.g.
VGA port, network interface, audio port) or (5) the actual
output device (screen, speakers, actuator). If the verifica-
tion aims to check if the rendering algorithms are exactly the
same, then the bit comparison seems to be a better measure-
ment point. But if it is allowed to modify the process and
only the final visible product needs to be verified, then the
second approach should be selected. It may be advisable to
take measurements at multiple measurement points and col-
lect the data for all of them. The choice of the measurement
point which is most accurate for the redeployment environ-
ment will be left to the person redeploying the process who is
aware of the reasons and requirements set to the redeployed
process. While measurement points will usually relate to ex-
ternal interactions (e.g. result storage, communication with
user or external system), internal interactions within process
may be useful to capture for partial redeployments, to allow
application and verification of a wider range of preservation
actions (such as component replacement) and to allow more
flexible redefinition of the boundaries identified in step 2.1.

3.2 Specify metrics for preservation quality compar-
ison The significant properties which were selected in the
first step have to be decomposed from high level significant
properties into tangible and measurable metrics which can
be measured and identified directly in the process. A wide
range of techniques can be used for decomposition. Espe-
cially techniques stemming from requirements engineering
may be particularly useful in this step, e.g. goal modelling
[12], GQM method [3], etc. It is also advisable to specify
metrics which can identify what the process should not do.
In many cases it is easier and quicker to identify the forbid-
den behaviour or an incorrect state of the process. Then the
redeployment can be rejected without a necessity of checking
other metrics.

Having defined the metrics, the target values are assigned.
These values will be used as the criteria for the assessment.
They have to be specified in view of considered purposes of
the redeployment. This information has significant impact
on the process of verification, because it impacts the im-

portance of available metrics and results they are supposed
to achieve. Target values itself can be specified in different
ways, e.g. metric A equals Y, metric B is maximum 120%
of the original value, etc.

3.3 Aim for automated measurements capture When
the VFramework is applied during planning of the preser-
vation activities and different preservation scenarios and ac-
tivities are considered, the possibility to automate measure-
ments decreases the time needed for evaluation of alternative
preservation strategies. This has lower importance when the
VFramework is used during the preservation phase and re-
deployment phase, when the preservation strategies are al-
ready defined. Regardless of the phase, automation of mea-
surements eases the process of verification.

4. Capture verification data This step has two main
tasks. Firstly, to configure the capturing environment for
collection of verification data. Secondly, to collect the veri-
fication data while the process is monitored by tools which
trace process interactions.

4.1 Prepare system for capturing In this step the cap-
ture environment is configured. Either a clean environment
is created in which the process is deployed, or an existing
instance of an operational system is used directly.

4.2 Prepare data capture tools Tools for capturing ex-
ternal interactions, as well as verification data are intro-
duced to the capture environment in the next two steps.

4.2.1 Set up tools for capturing external interactions
Tools which will intercept external interactions of the pro-
cess are installed in the capture environment. The captured
information will be used to ensure deterministic execution
of sample process instances (step 1) in the redeployment en-
vironment.

4.2.2 Set up tools for capturing verification data
Tools which collect data in previously specified measurement
points are installed in the capture environment. The cap-
tured information will be used to evaluate performance of
the redeployed process.

4.3 Run the process and capture data When the cap-
ture environment has been configured and the tools for cap-
turing data are in place, the instances of the process, which
were identified in the first step, are executed. The data is
being collected during and after the execution of the process.

4.4 Verify validity of captured data Once the execution
of process instances has finished, the recorded data is verified
for its correctness. This could be either manual or automatic
action, which checks if all the measurements were stored
correctly, e.g. if the log files are not empty. If all the data
is correct then it is stored into the VPlan.

5. Prepare system for redeployment This is the first
step performed in the redeployment environment. This step
has three main objectives. Firstly, to configure the rede-
ployment environment for collection of redeployment per-
formance data. Secondly, to redeploy the process in the new
environment. Thirdly, to execute process instances.

5.1 Prepare redeployment environment The environ-
ment in which the process will be redeployed has to be se-
lected. Tools which ensure determinism during execution of
the process, as well as the tools used for data collection have
to be installed.

5.1.1 Set up redeployment system Either it will be a
clean system or a system in which some other processes al-
ready exist. This depends on the purpose of the redeploy-
ment. If the process is run in an environment shared by other
process an analysis of possible external interactions has to
be conducted in order to ensure that the determinism of the
redeployed process is not affected by the new environment.

5.1.2 Set up external interactions replay to ensure
determinism The external interactions data is used in this
step to recreate the interactions of the system. Tools which
allow replaying of this data have to be installed in the rede-
ployment environment.

5.1.3 Set up data capture tools Similarly to the step 4.2,
the tools which extract redeployment performance data are
installed in the redeployment environment. These tools will
collect data needed for verification of the redeployed process
at the predefined measurement points.

5.2 Redeploy preserved process The preserved process
is redeployed in this step. Required adjustments to run the
process in the new environment are done and the instances
of the process which were used in the original environment
are executed.

5.2.1 Identify required preservation actions to en-
able redeployment The aim of this step is to ensure that
the process becomes operational in the new environment and
that all of the instances of the process defined in the first
step can be executed.

It is very likely that the preserved process will have to be
re-engineered in order to be fitted into the new environment.
For example, in the given environment a certain library re-
sponsible for encrypted communication with a web service
cannot be used. However, a substitute library which allows
to communicate with a web service with a different encryp-
tion mechanism might be available. Then such substitution
has to be made in order to make the process operational
(only if the redeployment scenario does not exclude such an
action). In this step all kinds of preservation actions such as
replacing a library with another one, cross-compiling code,
migrating a file, putting an additional wrapper around the
component, etc. may be applied.

5.2.2 Re-run the set of process instances Process in-
stances, which were defined in the first step and executed
in the original environment to collect verification data, are
executed in this step in order to create redeployment perfor-
mance data. The execution is controlled by the tools which
ensure determinism of the process.

6. Capture redeployment performance data The aim
of this step is to collect the redeployment performance data
from the new system and verify if the data collection condi-
tions were fulfilled.

6.1 Collect redeployment performance data The rede-
ployment performance data is recorded by the tools which
are monitoring the execution of process instances. All this
data is collected and will be used for comparison with the
verification data.

6.2 Verify validity of captured data Before the data
can be used for comparison, its validity and fulfilment of
assumed level of determinism of the environment needs to
be checked.

6.2.1 Verify if required level of determinism was
reached Results have to be analysed regarding the required
level of determinism in the environment. If it was possible to
ensure it and the tools which were introduced for this pur-
pose in the step 5 performed its task correctly then the re-
quirements are fulfilled. Otherwise, the procedure has to be
repeated starting from the step 5 and new ways of ensuring
deterministic execution of the process have to be introduced.

6.2.2 Verify correctness of capture data Similarly to
the step 4.4, the collected redeployment performance data
needs to be verified before it can be used for further analy-
sis. This could be either manual or automatic action which
checks if all the measurement were stored correctly, e.g. if
the log files are not empty.

7. Compare and assess The comparison of significant
properties measured in both environments is conducted in
this step. The comparison is described in a report and a
decision about fulfilment of redeployment purposes is made.

7.1 Compare redeployment performance data and
verification data In this step the comparison between ver-
ification data and redeployment performance data is con-
ducted. The comparison has to be done by contrasting the
data collected at each of the measurement points of the orig-
inal process with the data collected at each of the measure-
ment points of the redeployed process. Due to the changes
which might have been introduced to the process, some of
the measurement points may not be available. If so, the com-
parison is either omitted or another corresponding point is
used.

7.2 Conduct preservation quality comparison The met-
rics which were specified in Step 3.2 are calculated for the
redeployed process. These metrics allow to assess the quality
of preservation actions. These metrics are always interpreted
depending on the redeployment scenario, because they may
have different target values depending on the scenario. In
some scenarios the specific functional or non-functional met-
ric must be fulfilled, while in the other scenario it is not a
requirement.

7.3 Provide summary report A report summarising the
comparison is created. The report is supposed to deliver
credible information about the state of the redeployed pro-
cess, measurements made, metrics and their expected values
and any alterations detected which are not compliant with
the purpose of the redeployment.

7.4 Make the final decision The final decision is made
by the auditor who knows the reason for the redeployment

and using the report can make a credible decision.

7.5 If positive, remove tools used for verification If
the process is positively evaluated, then the tools for ensur-
ing determinism are removed from the environment, unless
they are needed for the redeployment. The original imple-
mentations or substitute services providing the full function-
ality are used instead. Similarly the tools for data collection
can be removed from the environment.

4. VFRAMEWORK EVALUATION
In this section we test the applicability of the framework
to an eScience use case. Section 4.1 provides details on
the use case, Section 4.2 explains how the VFramework was
executed to verify the process migration from Windows to
Linux.

4.1 Use case description
The use case provider stems from the domain of civil en-
gineering. It owns and maintains a system for supporting
the process of acquiring and managing data captured from
sensors installed in dams for monitoring the structures. The
experts working for this institution execute many processes
which are used for the structural monitoring through sensor
networks to determine the actual structural state, managing
visual and technical inspections to detect or analyse poten-
tial anomalies, and physical and mathematical models to
estimate the structural behaviour. They also use data anal-
ysis tools such as tabular and chart reports and graphical
representation of geo-referenced information. In fact, know-
ing the past structural behaviour is the best tool to perform
complex analysis and make correct predictions about the
state of the dams. In case of any anomaly or emergency, the
sensor data may need to be reprocessed or reanalysed to look
for mistakes in the original processes. Therefore being able
to rerun the processes using either the original data or the
new data and parameters is a crucial requirement for this
organisation. Digital preservation of processes was selected
as a strategy to address this requirement.

The process which is used for testing the applicability of the
VFramework is depicted in Figure 2. This process is run by
scientists who use their desktop workstations with Windows
7 as the operating system. The process consists of 5 steps
which fetch the sensor data from an external web service
(Get Data Files) download an R (Get R script)and TEX
(Get Tex script) scripts for processing and compiling the
data, generate PNG and TEX files (Generate Plots) which
are finally compiled into a PDF report (Generate Report).

4.2 VFramework application
1. Describe the original environment The first step
consists of sub steps which describe the process in detail,
choose its significant properties and process instance used
for data collection, as well as specify potential redeployment
scenarios.

1.1 Describe the process We have described the purpose
of the process, identified the users of the process and docu-
mented the components which build the process. We have
used tools for detecting software dependencies and docu-
mentation provided by the owner of the process.

1.2 Define set of potential redeployment scenarios In
this step we have defined two potential redeployment scenar-
ios. Scenario 1 assumes that the process will be redeployed
in order to be fully operational. It assumes that the ex-
ternal communications (e.g. web service) will be available.
Scenario 2 assumes that the process will be redeployed in
order to confirm that the values and plots presented in the
scientific paper were obtained from a cited data set. The
data set which was used for processing will be provided and
there will be no need for communication with the web ser-
vice. Further steps of this framework are always performed
in view of requirements of these scenarios.

1.3 Select process instances to be used for verifica-
tion For each scenario we have selected 10 instances which
were differing in the configuration of parameters. For sce-
nario 1, parameters for fetching data from a web service
were randomly altered. For scenario 2, 10 data sets from 10
different locations were used.

1.4 Identify significant properties to be preserved We
have conducted interviews with the owner of the process in
order to collect the list of significant properties for each of
the considered scenarios. We have collected both functional
requirements, e.g. the system must be able to generate sen-
sor data for quantitative interpretation, and non-functional,
e.g. the system provides correct results. The significant
properties were grouped by the scenario for which they are
important (sometimes both).

2. Prepare system for preservation In this set of steps
we have identified the process boundaries and described its
interactions. Our analysis also included the determination
of non-deterministic influencers and strategies for their mit-
igation.

2.1 Determine process boundaries There are two sce-
narios of redeployment considered. In the first one, which as-
sumes that the process is redeployed in order to be fully op-
erational, the presence of the web service is assumed. There-
fore we put the web service outside of the process boundary.
In case of the second scenario, when the redeployment is
done for the purpose of validation of experiment’s results,
we exclude first three steps of the process (Get Data Files,
Get R script, Get Tex script) from the process boundary.
Data used in the original experiment will be applied to the
process directly. In both cases the scripts which are the im-
plementation of process steps: Generate Plots, Generate Re-
port are within the process boundary. The operating system
and the software required to run the scripts is not included
as part of the process.

2.2 Determine external interactions In case of the sce-
nario 1 the process transforms the data obtained from a
web service. This is identified as an external interaction. In
both redeployment scenarios, steps of the process are exe-
cuted manually by executing commands using the keyboard.
Therefore the input from the keyboard is another type of ex-
ternal interaction. Finally, the files produced as the output
of the process are displayed on the LCD screen in the form
of a PDF document. The visual presentation of the results
on the screen is also identified as an external interaction.

Figure 2: Sequence diagram for eScience process with two process boundaries and measurement points (green
circles with ’M’) marked.

2.3 Determine internal interactions For both scenar-
ios, the process uses default settings of R and Latex. The
scripts are invoking the software from its original locations.
However, after careful analysis of software files, it turned
out that the default style file of latex article.cls was modi-
fied. Therefore, this file has to be preserved along with the
process and used in the redeployment environment to en-
sure same effects. Otherwise the final PDF reports will vary
in their layout (i.e. number of pages, alignment of content,
etc.).

2.4 Ensure deterministic behaviour For the purpose of
scenario 1, the interaction between the web service and the
process has to be captured and data files provided by the
web service have to be provided directly in the redeploy-
ment environment. In case of scenario 1 the execution of
the process is deterministic and there are no actions needed.

3. Design verification setting In this set of steps, we
have identified suitable measurement points enabling us to
measure significant properties defined for the redeployment
scenarios.

3.1 Specify measurement points The analysis of signif-
icant properties resulted in the decision to collect files pro-
duced after the execution of each step. The TEX files will
be compared with a use of text comparison tools. The PNG
plots will be compared in their rendered form. The PDF
report will also be compared in its rendered form as well as
by examination of its metadata. In case of scenario 1, the
communication to the web service will be measured by text
comparison of files received from the web service.

3.2 Specify metrics for preservation quality compar-
ison Using goal modelling techniques, we have decomposed
high level significant properties into measurable metrics and
coupled them with expected target values. For example: the
number of pages in PDF report must be equal, the repre-
sentation of the ’Residuals vs Leverage’ in the PNG plot is
the same, the duration of calculations is not longer than in
the original system, etc.

3.3 Aim for automated measurements capture The
analysed process is not formally specified (e.g. by being
specified within a workflow engine). All of the process steps
must have been performed manually and therefore most of
the measurements had to be taken manually. Only in case

of the first scenario, the requests to the web service were
captured by the tool described in [9].

4. Capture verification data In this step we collected
verification data from the original environment by running
process instances defined in the first step of the VFrame-
work.

4.1 Prepare system for capturing We have decided to
deploy the process in the new clean environment. The sys-
tem was configured according to descriptions of the process
and the required dependencies were added. Thus we vali-
dated that all necessary information about the process was
collected and there are no interactions which we might have
missed.

4.2 Prepare data capture tools In this two steps we
introduced tools enabling us to extract verification data from
the original system.

4.2.1 Set up tools for capturing external interactions
In case of the first scenario, the communication to the web
service will be captured by the tool described in [9]. We have
also used key logging applications installed in the operating
system to collect the inputs from the keyboard.

4.2.2 Set up tools for capturing verification data The
data will be collected with the use of tools provided by the
operating system.

4.3 Run the process and capture data We have run the
instances and collected data from all measurement points in
a separate folder. The folder structure and naming conven-
tion ensured that the verification data can easily be associ-
ated with the executed process instance.

4.4 Verify validity of captured data Due to manual
collection of files, each of them was inspected by us before
moving to the archive.

5 Prepare system for redeployment We decided to use
Ubuntu Linux1 as a redeployment environment. Ubuntu
Linux is an open source project, that is based on the GNU
Linux kernel. Ubuntu is easy to use, easy to install, well
established and widely used. All of the native operating

1www.ubuntu.com

system components are available with open source licenses.
Additional packages might be proprietary (such as the Acro-
bat Reader), but are available free of charge at the moment.

5.1 Prepare system for redeployment We chose Ubuntu
Linux 12.10 as the redeployment environment. The operat-
ing system was installed with standard configurations within
a virtual machine (VM). Our virtualisation environment was
VirtualBox2. We installed all required updates and ensured
the system was up to date. A desktop environment was
needed in order to setup the run time environment (see Step
5.1.1).

5.1.1 Set up redeployment System For redeploying the
process, we had to analyse which packages are needed in
order to substitute the Windows tools that implement the
steps of the use case. For the local steps we were able to use
the packages available from the Ubuntu repositories. This
includes the mathematical statistics package R3 and Latex4

(via the texlive package).

5.1.2 Set up external interactions replay to ensure
determinism Within our use case there was only one ex-
ternal interaction. The use case needs to retrieve data from
a Web service hosted on a machine beyond our influence.
In our first redeployment scenario, the Web service was still
available and maintained. In the second scenario external
dependencies could be removed, as a local data set was used.

5.1.3 Set up data capture tools The tools for capturing
the data produced by intermediate steps during the process
execution are provided out of the box by the Linux Ubuntu
operating system. All intermediate steps produce files that
can easily be examined by tools such as diff5.

5.2 Redeploy preserved process The redeployment step
involves executing the original process within its new envi-
ronment. To achieve successful redeployment, several ad-
justments have to be performed within the new execution
environment. These are described in the following steps.

5.2.1 Identify required preservation actions to en-
able redeployment

The original client software was implemented with the C#-
Language on top of the Microsoft’s .NET 4.0 platform, run-
ning on a Windows 7 operating system. The .NET platform
is exclusively available for Microsoft operating systems. Yet
there exist compatible implementations and run time en-
vironments for Linux as well. Several attempts have been
made in order to redeploy the process within a Linux envi-
ronment.

First, we tried porting the software client from the Win-
dows .NET 4.0 environment to the Mono Project6, which is
an open source software development platform and run time
environment. Mono enables the development and execution

2www.virtualbox.org, version 4.1.26
3R, Version 2.13.1
4pdfTeX, Version 3.1415926-1.40.10
5http://linux.die.net/man/1/diff
6www.mono-project.com

of .NET software products, which are binary compatible.
Although the mono migration tool7 indicated full compati-
bility, direct replacement was not possible due to invalid at-
tempts to access reserved areas of the memory. Having the
source code of the client available, we were able to identify
incompatible code between mono and .NET8 implementa-
tions within the Web service security stack.

The second approach we considered was porting the client
software into a Wine9 (Wine Is Not an Emulator) envi-
ronment. Wine allows to run many Windows applications
on a Windows platform, by substituting required libraries
and acting as a compatibility layer. Hence wine allows to
run legacy Windows applications, without the need to main-
tain the full operating system. Using the package manager
winetricks10 the installation of the required runtime libraries
could be scripted. Hence we could use the original Microsoft
.Net framework 4 component, that can be installed within
the wine environment. This enabled the execution of the
client software within the Linux redeployment environment.
Hence we could retrieve the data from the web service within
a Linux environment.

The next challenge was to orchestrate the packages, that
we used for executing the intermediate steps of the process.
Adjustments were required regarding naming conventions of
applications and paths. Differences occurred in encoding
standards and in the scope of included features in the pack-
ages. Missing libraries were indicated at the runtime and
could be easily installed.

5.2.2 Re-run the set of process instances After the
environment has been set up correctly, the use case could
be executed. This involved invoking the Web service, which
provided the data for further processing. Next, the R script
has to be invoked with the retrieved data. The final step
produced the PDF document based on the retrieved data.

6 Capture redeployment performance data Data pro-
duced during the process execution and captured in the mea-
surement points is collected and verified for its correctness
during the course of this step.

6.1 Collect redeployment performance Data The se-
lected measurement points overlap with the outputs of the
three steps of the use case which produce intermediate data.
This data is persistently stored in files on the hard disk of
the redeployment environment.

6.2 Verify validity of captured data The following sub
steps aim to verify if the data is not affected by lack of
deterministic environment and if the measurements are free
of unexpected errors.

6.2.1 Verify if required level of determinism was
reached In the first scenario, the Web service is still avail-
able. Hence it can be compared to the original data set. In
the second scenario, the data is static, hence deterministic.

7www.mono-project.com/MoMA
8http:// www.mono-project.com/WCF Development
9www.winehq.org

10http://winetricks.org/winetricks

6.2.2 Verify correctness of capture data Once the ex-
ecution of process instances has finished, the recorded data
was verified for its correctness. All of the files could be
opened and the screening of their contents was made to ver-
ify their correctness.

7. Compare and assess In this set of steps we conducted
the comparison of verification data and redeployment per-
formance data. The final assessment about fulfilment of the
requirements of the redeployment scenarios was made.

7.1 Compare redeployment performance data and
verification data For both scenarios all of the measure-
ment points were available in both environments. We were
able to match all of them at the corresponding levels of
comparison (see Section 3.1). For example, the TEX files
produced by the step Generate Plots were matched for com-
parison at the file level. Similar matchings were made for
other measurement points.

7.2 Conduct preservation quality comparison In this
step we calculated the metrics, which were defined in Section
3.2. The examples are: the original PDF report has 169
pages, the new PDF report has 169 pages, values are equal
(fulfilled); the process executes in 16,93 s in the original
system, the process executes in 12,96 s in the redeployed
environment, execution time is not higher (fulfilled), etc.

7.3 Provide summary report Having calculated the met-
rics, we have created a summary report. It is a document in
which all the metrics for each of the scenarios are collected.
Clear indication whether the target values are fulfilled is
given.

7.4 Make the final decision The report presented that all
significant properties of the process were preserved correctly.
The requirements of redeployment scenarios were fulfilled.
The final decision was made, that the redeployment meets
requirements of redeployment scenarios.

7.5 If Positive, remove tools used for verification
There was no need to remove the tools.

5. CONCLUSIONS AND FUTURE WORK
In this paper, the VFramework for verification of preserved
and redeployed processes was presented. The applicability
of the framework was demonstrated on an eScience use case
from the domain of sensor data analysis in civil engineer-
ing. The preservation and the redeployment of the eScience
process was tested by migration to another substantially dif-
ferent environment. For the purpose of redeployment, the
process had to be re-engineered and adjusted to work in the
new environment. The VFramework was capable of verifi-
cation of the redeployment in both of the considered rede-
ployment scenarios.

Future work will focus on automation of the verification pro-
cess. The tools needed for extraction and comparison of
measurements taken for significant properties in the mea-
surement points will be created. Furthermore, the VFrame-
work will be tested on further use cases and in different
redeployment scenarios.

ACKNOWLEDGMENTS
This research was co-funded by COMET K1, FFG - Aus-
trian Research Promotion Agency and by the European Com-
mission under the IST Programme of the 7th FP for RTD -
Project ICT 269940/TIMBUS.

6. REFERENCES
[1] IEEE Std 1012 - 2004 IEEE Standard for Software

Verification and Validation, 2005.

[2] ISO/IEC 12207:2008: Systems and software
engineering - Software life cycle processes, Feb. 2008.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. In Encyclopedia of
Software Engineering. Wiley, 1994.

[4] C. Becker, H. Kulovits, A. Rauber, and H. Hofman.
Plato: a service-oriented decision support system for
preservation planning. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries
(JCDL’08). ACM, June 2008.

[5] M. Guttenbrunner and A. Rauber. Evaluating an
emulation environment: Automation and significant
key characteristics. In Proceedings of the 9th
International Conference on Digital Preservation
(iPres 2012), pages 201–208, Toronto, Canada,
October 1-5 2012.

[6] M. Guttenbrunner and A. Rauber. A measurement
framework for evaluating emulators for digital
preservation. ACM Transactions on Information
Systems (TOIS), 30(2), 3 2012.

[7] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth
Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, 2009.

[8] R. Mayer, A. Rauber, M. A. Neumann, J. Thomson,
and G. Antunes. Preserving scientific processes from
design to publication. In P. Zaphiris, G. Buchanan,
E. Rasmussen, and F. Loizides, editors, Proceedings of
the 16th International Conference on Theory and
Practice of Digital Libraries (TPDL 2012), volume
7489 of Lecture Notes in Computer Science, pages
113–124, Cyprus, September 23–29 2012. Springer.

[9] T. Miksa, R. Mayer, and A. Rauber. Ensuring
sustainability of web services dependent processes.
International Journal of Computational Science and
Engineering (IJCSE), 2013. Accepted for publication.

[10] C. Thanos, S. Manegold, and M. L. Kersten. Big data
- introduction to the special theme. ERCIM News,
2012(89), 2012.

[11] M. Van der Graaf and L. Waaijers. A Surfboard for
Riding the Wave. Towards a four country action
programme on research data. A Knowledge Exchange
Report, 2011.

[12] Young, R. R. (2004). The Requirements Engineering
Handbook.

