
Design Decisions in Emulator Construction: A Case Study
on Home Computer Software Preservation

Mark Guttenbrunner
Secure Business Austria

Vienna, Austria
mguttenbrunner@sba-research.org

Andreas Rauber
Vienna University of Technology

Vienna, Austria
rauber@ifs.tuwien.ac.at

ABSTRACT
Preserving software is widely recognized as a far more com-
plex task then preserving static data. Emulation is usually
the chosen preservation action to enable the execution of
programs of obsolete systems. In this work we show how
software extracted from obsolete media was preserved by
developing an emulator. We explain the reengineering work
involved and the design decisions made as well as the options
for data injection into and extraction from the emulated en-
vironment.

In previous work, data and programs stored on audio tapes
were extracted and the resulting audio files were transformed
into digital objects. The objects retrieved were mainly pro-
grams, requiring emulation for execution. As no emulator
for the original system previously exists, we here show how
we implemented one. We first describe the system in more
detail and explain the reengineering of the view-path for the
execution of programs on the original system. We show how
an existing emulator for a video game system was expanded
by emulation capabilities for the view-path of the home com-
puter and how the different options for data exchange with
the host environment were implemented on different levels
in the view-path. We explain how differences in input and
output formats and methods influence the development of
an emulator and that, depending on the original system, the
transfer of data between the emulated environment and the
host environment enforces implicit migration of the data to
become usable.

1. INTRODUCTION
Preserving digital objects for a long term does not only con-
cern preserving static data like pictures or text documents.
For a wide range of digital objects not only data has to be
preserved but the actual rendering process of data is sig-
nificant. This is especially true, when a digital object has
to be continuously rendered, as in the preservation of soft-
ware. But also whole business or scientific processes need to
be stored for a long term to be able to exhume them at a

later time and run them in a changed environment. One of
our main concerns for preserving processes is keeping them
accessible and the software originally used executable.

Preserving software across rendering environments, i.e. ex-
ecuting the software on a platform it was not designed for,
is usually solved by executing the software in an emulator
emulating the hardware of the platform and running on a
different host platform. While the advantage of a hardware
emulator is that it can potentially run all software designed
for the hardware it emulates, it is a quite complex task to
build an emulator [5] and involves expert knowledge about
the hardware specifications of the original system. It is also
necessary to not only emulate the hardware, but also to pro-
vide methods for providing input to the emulated system,
either in the way of interaction with the system by using
keyboards or other input devices, but also by injecting data
from files into the system. Extracting data for usage in the
host environment is also an important issue not tackled by
most emulators today.

As previously published in [7] we extracted data encoded in
audio wave forms from cassette tapes. Almost all the data
extracted was programs written in a dialect of the computer
language BASIC. The programs where converted from their
original binary form to source code in readable text for-
mat. As preserving the source code is only the first step
of preserving the programs, research on potential render-
ing environments was carried out. In this paper we now
demonstrate the development of an emulator for the system
and show which design decisions have to be made and what
problems one has to deal with even with a fairly simple com-
puter architecture. We show what one must consider so an
emulator developed can be used for digital preservation by
providing functionality for injecting data into the emulated
environment and extracting data for use on the host system.

This paper is structured as follows. First we provide re-
lated work relevant for this paper. In Section 3 we examine
the view-path of the original system and provide informa-
tion on how the different components involved interact. We
present how we implemented the view-path in an emulator
in Section 4. In Sections 5 and 6 we explain the reengineer-
ing work necessary for data exchange between the emulated
environment and the host environment. We explain what
choices we were given to solve certain problems and what
design decisions were taken for implementing the function-
ality, keeping digital preservation in mind. Next, we show



how the image rendered by the emulator can be evaluated
against the original system and other alternative rendering
environments. In Section 8 we then discuss other possible
preservation actions besides emulation on different levels in
the view-path. Finally we show our conclusions and give an
outlook to future work.

2. RELATED WORK
Preserving software for obsolete computer platforms has to
be performed in two steps: transferring the programs to a
non-obsolete environment and executing the programs in a
different rendering environment.

In [7] we demonstrated the documentation of the output for-
mats of an early home computer system (the Philips Videopac
G7400 utilizing an extension that allows the system to exe-
cute BASIC software and store and retrieve data from and
to cassette tapes). We showed that even for comparatively
simple systems a lot of steps are necessary to reengineer the
data formats. In a case study shown in the same paper, we
transferred data from various old tapes to a non-obsolete en-
vironment using a tool we developed. The data was then mi-
grated to non-obsolete formats using signal processing tech-
niques to convert the analog sound signal to binary data.
While static data like images can then be opened in current
viewers, software in BASIC source code format converted to
readable text can not be executed in a current environment
without further preservation actions.

Source code is one of the significant properties of software
that allow us to migrate the software for preservation pur-
poses [12]. For interpreted program languages like BASIC
(compared to program languages where source code is com-
piled to executable software) the source code is equal to the
executable software given the availability of a suitable inter-
preter.

Diessen et. al. describe in [18] the view-path as
”
a full set

of functionality for rendering the information contained in a
digital object”. The view-path contains the hardware and all
other secondary digital objects needed to render an object
and also to run a certain piece of software. As an exam-
ple, to run a simple JAVA program printing ’Hello World’
on screen, a JAVA virtual machine, different libraries, an
operating system running the virtual machine and the hard-
ware to execute the operating system are needed. In OAIS
[9] terminology the view-path contains the Access Software
used to render the digital object as part of the representa-
tion information and all secondary digital objects needed to
execute the Access Software.

Different strategies for preserving digital objects exist, the
major ones being migration and emulation. Migration, which
involves altering the original format of the digital object
([11]), is the main strategy for preserving static content.
In [14] Rothenberg explains that the emulation of the log-
ical behavior of a computer system should be sufficient on
a relatively abstract level. Lorie differentiates between the
archiving data and archiving program behavior. While the
first can be done without emulation, Lorie argues that it
cannot be avoided for the latter [10].

Execution in an emulation environment necessitates expert

Figure 1: view-path for a generic system.

knowledge about utilization of the original environment and
creates issues like data exchange between the emulation en-
vironment and the host environment [13]. Although the sec-
ond issue was partially solved in the emulator Dioscuri, cre-
ated specifically for digital preservation [16], it is still far
from being a standard in current emulators.

The European research project KEEP1 performs research in
legal aspects of emulation as well as develops a common plat-
form for emulators (Emulation Virtual Machine) to

”
Keep

Emulation Environments Portable”. Some of the legal is-
sues raised by KEEP also apply to the development of the
emulator in this paper.

In [4] examples for the fragility of performance works based
on electronics under the aspect of re-performance are pro-
vided and the question is raised, how to guarantee authen-
ticity when preserving the electronic material. Comparing
renderings of the same digital objects in different environ-
ments is usually done manually by a human observer. A
case study to compare different approaches to preserve video
games, with one of the approaches being emulation, was re-
ported in [6] on a human-observable and thus to some extent
subjective level. In [8] we presented case studies of interac-
tive objects comparing the rendering outcomes of different
rendering environments.

In this paper we show how the concept of a view-path can be
applied to an obsolete system. We explain how software for
the system is preserved using emulation by implementing
an appropriate emulator. Digital preservation in mind we
discuss the design decisions that have to be taken and we
show discuss how the emulation results can be compared.

3. PROGRAM EXECUTION ON THE ORIG-
INAL SYSTEM

For identifying the elements needed for the execution of soft-
ware on the original system, we first have to determine the
view-path of the software.

In the most simple case the view-path of a digital object
contains the digital object, the viewer used to render the
object, the operating system to execute the viewer and the
hardware to run the operating system as shown in Figure

1http://www.keep-project.eu/



Figure 2: Philips Videopac+ G7400 with plugged in
Philips C7420 Home Computer cartridge.

1. Depending on the digital object and the system used,
some elements in the view-path can be missing. E.g. if
the digital object is software, then usually the software is
running directly

”
on top” of the operating system. In the

case of early computers, the software runs directly on the
hardware without the use of an operating system.

To determine the view path on the original system, infor-
mation about the hardware and the software running (e.g.
BIOS) has to be collected. This information can be collected
using different sources like the original circuit diagrams of
the system and the cartridge, disassembled code of the Z80
BIOS and the terminal software, and last but not least valu-
able information found out by other members of a commu-
nity still working actively with the original system (expert
knowledge).

The original system used to execute the digital objects is a
Philips Videopac+ G7400 video game system, which is ex-
panded to a home computer using the Philips C7420 Home
Computer cartridge (Figure 2). Details about the history of
the system can be found in [7]. Using the C7420 cartridge,
the video game system was extended by an extra proces-
sor (Zilog Z80), more memory (RAM) and an extra operat-
ing system (ROM) implementing the programming language
Microsoft BASIC-802. Figure 3 shows a block diagram of
important parts of both the C7420 cartridge and the G7400
System.

The communication of the C7420 cartridge with the G7400
main system is done using a program running on the Intel
8048h processor inside the G7400 that serves as a terminal
program by checking the system hardware for input (key-
board and joysticks) and also issues the commands for out-
put sent from the C7420 cartridge to the relevant registers
of the Intel 8245 VDC (Video Display Control) chip and the
Thomson Semiconducteurs EF9340/EF9341 chip pair inside

2Microsoft BASIC - Wikipedia: http://en.wikipedia.
org/wiki/Microsoft_BASIC

Figure 4: Communication flow between G7400 sys-
tem and C7420 cartridge.

the G7400. These 3 chips produce all the visible and audible
output of the system. Communication between the software
running on the Z80 processor and the software running on
the 8048h processor is managed by using two 8-bit regis-
ters that serve as a read and write latch. The Z80 processor
writes information to the latch and then sets an input line on
the 8048h processor. By checking the input line, the 8048h
knows if information is available and proceeds reading the
latch. For the other direction the 8048h writes to a different
latch and sets a line that is connected to the Interrupt line of
the Z80 processor, thus triggering an interrupt service rou-
tine on the Z80 that then can read the latch. Additionally
the 8048h can send a RESET signal to the Z80 to reset the
processor. The communication flow can be seen in Figure 4.

The BIOS, which is run on the Z80 processor, executes BA-
SIC commands either entered by the user or stored as a pro-
gram with line numbers. Results of operations are sent to
the relevant registers on the G7400 using the described flow
of communication. Commands accepting input are receiv-
ing the relevant input data from the G7400. Additionally to
the data exchange with the G7400, the C7420 can store and
retrieve data from an audio source connected directly to the
cartridge using microphone / headphone plugs.

The resulting view-path for the G7400 system with C7420
cartridge can be seen in Figure 5. The digital object, in
this case a BASIC program, is executed by the BASIC in-
terpreter of the operating system. The BASIC interpreter
is run on the Z80 CPU. Additionally, in this case a second
branch of the view-path exists, which handles the input and
output. In parallel to the operating system running on the
Z80 processor, a terminal program for communication with
the Z80 is run on the 8048h CPU, communicating input and
output data between the G7400 system and the C7420 car-
tridge.

4. IMPLEMENTING THE VIEW-PATH IN
AN EMULATOR

As we did not want to start working on the G7400 and C7420
emulator from scratch, the existing open source emulator



Figure 3: Block diagram of C7420 Home Computer cartridge and Philips Videopac+ G7400 system. Con-
nection between cartridge and system is done using the cartridge connector. CPU - Central Processing Unit,
GPU - Graphics Processing Unit, RAM - Random Access Memory, ROM - Read Only Memory.

Figure 5: view-path for program execution on G7400+C7420.

O2EM3 was used as a starting point. O2EM initially was
written in 1997 as an emulator for the video game system
Magnavox Odyssey2, which is the American version of the
Philips Videopac G7000. It was later modified for support-
ing the different screen timing of the European system as
well as the additional functionality of the successor of the
Philips G7000, the G7400. The emulator is written in the
programming language C, and is thus portable to different
systems without changes.

To integrate C7420 emulation into O2EM we first have to in-
tegrate emulation for the Z80 processor that would run side
by side to the original 8048h emulation. An existing em-
ulator of the Zilog Z80 4 programmed by Marat Fayzullin
is used. Using a separate module for emulating the Z80
processor component also follows the principle of modular

3O2EM - Sourceforge: http://o2em.sourceforge.net/
4Marat Fayzullin Emulation Resources: http://fms.
komkon.org/EMUL8/

emulation as described by van der Hoeven et. al. in [17].
By using a Z80 processor emulation that is already proven
to work in other emulators we can make sure, that the de-
velopment effort on our side is reduced, minimizing also the
risk of introducing erroneous emulation behavior by relying
on existing, tested modules. Integration of the processor
emulation consists basically of the following steps:

Z80 Memory Access and Interrupt After defining the
64 KByte memory of the C7420 as an array, the BIOS
for the C7420 is loaded into the first 8 KBytes of the
memory. Function prototypes provided by the Z80
emulator to access the memory are filled with code
to access the memory (fetching instructions from the
memory and reading and writing data). The prototype
function checking for interrupts has to be adapted to
signal an interrupt to the Z80 if the 8048h emulation
sets the corresponding variable.



Z80 Input and Output Functions The Z80 processor has
instructions for writing to output ports and also read-
ing from them. These ports are used to access the
latches for communication of the Z80 processor with
the 8048h processor. The prototype functions are im-
plemented to read from the latch defined at port 0xC0
and write to the latch defined at port 0xE0, as well as
setting the T0 line of the 8048h.

I8048h Instructions, Input and Output Functions The
8048h instructions to check T0 line were previously
only implemented to support a different kind of ex-
pansion for the G7400 system. These instructions have
to be adapted in order to read the line that is set by
the Z80 processor and reset it (to tell the Z80 proces-
sor that the 8048h recognized a written byte). Read-
ing and writing to external memory also has to be
adapted to read from the latch-register defined as ex-
ternal memory on address 0xE0 and write to the latch
register defined as external memory on address 0xC0.
Additionally, the write-function to the output ports of
the 8048h has to be adapted, as pulling the lower two
bits of Port 1 to low is supposed to reset the Z80 and
pulling just Bit 1 of Port 1 to low signals an interrupt
on the Z80.

Execution of Z80 cycles Finally the emulation main loop
has to be extended to include the execution of Z80 in-
structions. The 8048h processor is running at a clock
rate of 0.394 MHz internally, while the Z80 processor
is running at a 3.547 MHz clock rate, which makes it
roughly execute 10 clock cycles for every 8048h clock
cycle. Completely accurate cycle exact timing was not
a necessity, as the communication between Z80 and
8048h is based on a handshake protocol, so one waits
until the other provides the necessary data. The main
execution loop sets the counter of cycles to execute to
10 and invokes the Z80 emulation.

To actually synchronize the emulation of the 8048h and the
Z80 and implement the aforementioned steps, debug output
of instructions of both processors is enabled and the log an-
alyzed to find out exactly, which processor is doing what at
a given point in time. By debugging through the assembler
instructions of both processors, the handshaking can be es-
tablished and the emulator starts up with the start screen
of the C7420 Home Computer cartridge as shown in Figure
6.

5. DATA INJECTION
After establishing the emulation of C7420 Home Computer
cartridge, the next step is to enter data into to the emulated
environment. Three options for data input are available on
the original system. Below we describe these three options
and the challenges they present for emulation.

5.1 Keyboard
An obvious method of data entry to the emulated environ-
ment is a key press. The previous implementation of the
keyboard routine mapped every key on the original G7000
system keyboard to a key on a standard PC keyboard. This
was sufficient for the currently emulated programs as the

Figure 6: Start screen of C7420 Home Computer
cartridge on O2EM emulator.

extra keys of the G7400 keyboard were not used in any of
the supported programs.

In a first step we correct the keyboard routine to support
the extra two rows of keys on the G7400’s keyboard. This
provides us with the possibility of mapping every key on the
G7400 keyboard to a key on a modern keyboard. Unfortu-
nately, the differences between current keyboards and the
original G7400 keyboard are quite significant. As an exam-
ple, a special key providing opening and closing brackets (’[’
and ’]’) exists which is not directly to be found on a mod-
ern keyboard but only reached through key combinations.
Additionally, various key combinations create different ef-
fects, for example the number sign (’#’) is printed on the
G7400 keyboard as a combination of the SHIFT key and the
number ’0’, whereas a modern keyboard has its own key for
it.

The BIOS of the G7400 checks the keys by going through
every line of keys on the keyboard and reporting which key
is pressed. Combinations of keys (e.g. SHIFT and a num-
ber) are recognized in the terminal software of the C7420
running on the 8048h processor. This software converts the
pressed key to an ASCII encoded character depending on
the combination of keys pressed and sends the ASCII code
to the Z80 BIOS routine.

To improve the keyboard routine, we identify the following
levels where it can be intercepted:

Z80 BIOS Directly inserting key-presses into the keyboard
routine of the Z80. The Z80 reads the keys received
from the terminal program running on the 8048h and
writes them in a keyboard buffer. Keys read in ASCII-
format from the host-keyboard can be directly written
into the keyboard buffer (with the exception of charac-
ters that have a different code on the C7420 system).
This would be a special routine only working for the
C7420 BIOS, as it uses specifics otherwise not found
on the system. It also would not be compatible with



the current keyboard routine.

Communication interface Alternatively, keys can be writ-
ten to the memory of the 8048h. As the keyboard rou-
tine in the terminal software already converts the key
presses to ASCII, keys could be written as received
from the keyboard functions. This method like the
previous one would be a special implementation for the
C7420. The existing hardware emulation would have
to be disabled to not interfere with the other routine.

Hardware level Adapting the keyboard routine on the hard-
ware emulation level offers the most compatibility not
only for the C7420 Home Computer cartridge but for
all other software developed for the G7400 system as
well. Instead of the current implementation to have
a one-to-one relationship between a key on the host
keyboard and a key on the emulated hardware, with
the flaws described above, a new routine could do a
mapping of the actually entered character on the host
system and set the appropriate keys in the emulated
environment to simulate key-presses corresponding to
the entered character.

We decided to extend the keyboard routine on the hardware
level to reach the best compatibility for all programs run-
ning on the hardware. In a first step we create a mapping for
all useful key-presses on the G7400 (e.g. combinations like
’CONTROL’, ’SHIFT’ and a character don’t have any effect
on the C7420, and even thought they could be theoretically
read by replacing the G7400 BIOS routines by a self-written
routine, the ergonomics of the membrane keyboard make it
hard to press two keys at the same time). Next we replace
the routine that reads the state of the mapped keys by a
routine that first reads the ASCII Code of the entered char-
acter (considering modifier keys like Shift or Control), and
sets the corresponding keys on the G7400 emulation using a

”
best guess”strategy to decide what the user actually wanted

(e.g. entering ’=’ sign on the host keyboard (using a com-
bination of different keys on the host keyboard) is mapped
to pressing the ’=’ key on the G7400 keyboard. Likewise
entering ’;’ on the host keyboard emulates a key press of the
Clear key and the Shift key on the G7400 keyboard, which
- in the original system - produced the semi-colon. Some of
the keys had to be emulated by non-obvious combinations,
for example one key for creating a character consisting of
two dots, not available in ASCII or an modern keyboard,
was simulated by entering ’§’.

To test the validity of the keyboard routine, we wrote an
assembler routine that reads out the pressed key and com-
pares the results of the program on the real hardware and
the emulator. Entering key-presses to the emulated C7420
environment also now creates the expected results. We also
checked some samples of other software running on the em-
ulator to make sure that the new keyboard routine did not
break other software for the system.

5.2 Joysticks
The original system has two joysticks that are emulated by
O2EM either using actual joysticks connected to the host
environment or keyboard emulation for the joysticks. The
polled data is provided to the emulated environment as soon

as the BIOS of the G7400 tries to read the hardware ports.
It is then handed over to the BIOS running on C7420 and
can be read using the correspondent BASIC commands (e.g.
STICK(0)). As the joysticks were already properly emulated
by the original emulator, no additional actions had to be
performed.

5.3 Files
Besides data injection through control devices, the C7420
supports the loading of files from an audio signal connected
through a microphone jack. In this section we will show
different possibilities of loading a file into memory.

Hardware Emulation On a hardware emulation level, the
component for reading data from the audio source,
converting it to a digital signal and providing it on
the input port of the Z80 is the most complex one.
Basically, when the user tries to load a file using the
’CLOAD’ command, the bits provided in the audio
stream are decoded, assembled to a byte and written
to the appropriate memory location. By reengineering
the original BIOS routine of the ’CLOAD’ command
and based on the format as described in [7] we were
able to create a routine that emulates that behavior
of the original tape interface and provides the correct
data in the correct timing to the CPU. The original
tape was simulated by providing a directory in which
the different files are stored. Using ’CLOAD’ without
a filename loads the file first written into the directory,
subsequent calls of ’CLOAD’ load the next file respec-
tively. Using ’CLOAD’ with a filename loads the file
with the specified filename. ’CLOAD’ supports loading
of every file type supported by the C7420, i.e. BASIC
programs, screenshots, data, and memory dumps.

Direct Writing to Memory An alternative to the afore-
mentioned method of hardware emulation is to load a
file into memory and directly write the loaded bytes
into the correct memory locations. For this purpose
the behavior of the original ’CLOAD’ has to be reengi-
neered even more to find out what all memory po-
sitions are affected (e.g. counter for free memory).
Using this method we implement a special key that
presents the user with a file-browser-dialog to select a
file. Only BASIC programs can be stored using the
direct memory method.

Both of the aforementioned methods result in the same mem-
ory structure when loading a file, with writing directly into
memory being much faster (as the file is instantly loaded)
whereas the hardware emulation preserves the original tim-
ing and thus needs a few minutes for programs with more
than 100 lines. Using the hardware emulation it is possible
to have programs load and save data from within using the
original BIOS functions.

The data loaded from the tape interface is basically in the ex-
act same format as written into memory (with the addition
of leading and trailing bytes and some start- and stop-bits
to separate bytes). To provide better support for using the
emulator as a cross-programming-tool, we also implement
implicit migration of BASIC files in text format. Loading



a text file containing human readable BASIC source code
is automatically detected and migrated back to the origi-
nal binary format with encoded line numbers and encoded
BASIC commands, so it can be used again in the original
environment, the C7420.

6. DATA EXTRACTION
While data injection is an important issue to execute and in-
teract with software in the emulated environment, for some
digital preservation applications it is necessary to extract
data from the emulated environment. Especially if emula-
tion is used to access data stored in its original format and
the data has to be used in the host environment, methods of
copying data to one’s current environment have to be pro-
vided. The methods for data extraction we implemented in
the emulator are listed below.

6.1 Files
Using an emulator to modify data stored in an obsolete for-
mat makes it necessary to be able to save previously loaded
files again. Again, two different methods are implemented:

Hardware Emulation The BASIC command ’CSAVE’ for
saving data is implemented analogue to the command
for loading files. We again have to reengineer the for-
mat by examining the code of the BIOS written in
Z80 machine language to observe, what data is writ-
ten to the output interface. The data stored by the
BIOS is written to an array and saved under the file-
name given with the command. ’CSAVE’ works for all
possible variations, saving programs, data, screenshots
and memory dumps.

Direct Read From Memory As with ’CLOAD’ a func-
tion to directly write a BASIC program to disk is pro-
vided. As the format of storing BASIC programs in
the memory of the C7420 was analyzed for creating
the other file functions, it was also possible to create
a function to provide a dialog to the user to ask for a
filename and directly dump the memory in the correct
format to a file.

As with ’CLOAD’ the resulting file is the same in both cases,
with the hardware emulation being compatible to all formats
and the direct read from memory version being easier to
use without expert knowledge and being considerably faster.
The choice of type of BASIC file (either in text format for
easy readability or in binary format as originally created by
the system) can be specified as a command line option for
the emulator.

6.2 Clipboard
One feature hardly present in emulators today but crucial for
their use for digital preservation purposes is the possibility to
extract rendered text in machine-readable form as separated
characters from the emulated environment for use in the
host environment. As the original environment in the C7420
does not support marking regions of text on the screen, and
putting it in an internal clipboard, we decided to implement
a function that copies the whole screen content as characters
into the clipboard of the host system, so the text can be

pasted into any application. Two different hook points for
extracting data from the C7420 are possible:

Extraction from C7420 screen buffer The C7420 Home
Computer cartridge holds an internal representation of
the screen buffer for manipulation through the Z80 in
the Z80 memory area (RAM). Extracting the charac-
ters from there would be possible by reengineering the
memory location the screen data is saved at, as well as
the format it is saved in. This would be the preferred
option if the data was not rendered in the hardware
chip as text on the screen.

Extraction from emulator screen buffer The G7400 uses
a teletext type of display chip for rendering graphics
of the C7420. Thus a representation of the screen data
(the characters) has to be held in the video screen
buffer for rendering the image. By extracting data
from the video screen buffer we not only create the
possibility of copying data from the C7420 cartridge
but also from all other software for the G7400 using
the video chip.

We decided to go with the more generic version and extract
the data directly from the video memory of the emulator.
Depending on the operating system different routines for
copying data to the clipboard has to be implemented. The
data that is extracted is in ASCII, so we can directly use
it for copying it to the clipboard. The video chip is able to
apply certain special effects on the characters (e.g. double
size, blinking characters, underlined characters). As we need
to get a text representation of the data for later usage in
other applications we decided to ignore the format and just
copy the actual characters to the clipboard. As not all the
characters have the same code representation as in a current
ASCII format table, a conversion for certain characters is
performed while copying the data.

6.3 Screenshots
Screenshots of the emulated environment can be used e.g.
to compare emulation results with the original environment.
Extracting data in the form of screenshots can be done us-
ing one of three different methods on different levels of the
emulation:

In the Emulated Environment Using the screenshot fea-
ture of the C7420 (the ’CSAVES’ BASIC command)
the screenshot can be saved to a file and converted to
a non-obsolete format using the tool we developed in
[7]. Using this method it is possible to compare the
principal rendering inside the emulation environment.
It can not be checked if the emulator renders the image
correctly on the host system.

Inside the Emulator The emulator O2EM has a built-in
feature that allows saving screenshots of the rendered
environment. Using this feature it is possible to manu-
ally save screenshots at certain points in the emulation.

From the Host Environment Using a screenshot tool in-
side the host environment automatic screenshots at dif-
ferent time points can be taken as well as a video of
the emulation.



Figure 7: Different renderings in the view path of
the C7420 Home Computer cartridge.

The resulting screenshots can be used e.g. to compare ren-
dering results of different rendering environments for preser-
vation planning purposes as described in [8].

7. EVALUATING RENDERING RESULTS
To select the best preservation solution for a certain sce-
nario, it is necessary to compare all available preservation
actions. In [2] Becker et.al. describe a preservation plan-
ning approach based on comparing significant properties of
digital objects before and after applying a preservation ac-
tion. While on migrated data the digital object before and
after migration can be compared, the task is different when
dealing with emulation. Instead of comparing the digital
object, renderings of the digital object in different rendering
environments are compared.

Results of rendering can be compared on different levels.
Figure 7 shows the different levels on which an image is
rendered inside the view-path of the C7420 Home Computer
cartridge in conjunction with the G7400 system.

In detail the levels on which we can compare the rendering
results are:

Z80 Memory The BIOS running on the Z80 has an in-
ternal representation of the screen memory that can
be extracted using the screenshot feature ’CSAVES’.
Doing this on the original system and on the emulated
system, we receive two files which can directly be com-
pared. If the files are identical, then the emulation of
the Z80 CPU is correct (for the rendering of the test

digital object). Yet, we cannot ascertain, that the ac-
tual rendering as provided by the emulator matches
the rendering of the original system.

Video Chip Memory Another representation of the ren-
dered object exists in the Memory of the video chip.
This memory region is emulated in the emulator and
can be read out. Unfortunately it cannot be read on
the original system without directly reading the signals
from the hardware and decoding them accordingly.

Host System BIOS The emulator renders the image stored
in the video chip registers. The image is rendered and
saved either in the Host system representation of the
screen content or directly in the video card memory.
Obviously this representation of the rendering exists
only in the emulated rendering environment. Using
this representation (basically creating a screenshot of
the emulator’s output) we can compare different ren-
dering environments running on a host system (e.g.
emulator of architecture level, high level emulator). In
[8] we demonstrate how the rendering results of differ-
ent rendering environments can be compared by using
the characterization language XCL as described in [3]
for objectively comparing the significant properties of
two screenshots.

Display Device Finally, a comparison on the level of the
display device (comparing the output of the original
system on a display device with the output of the em-
ulator on a different or even the same output device)
can be performed. This comparison is usually done
manually and subjectively by the human preservation
planner.

Not only the level of extraction of an image for comparison
is relevant, also the time line is important. Usually, espe-
cially with interactive and dynamic software, we are not only
interested in a screenshot at a certain point in time, but ei-
ther a series of screenshots or a continuous extraction of a
video stream, which also allows the comparison of factors
like timeliness and synchronicity, e.g. with sound output,
compared to the original.

While the emulator supports already the extraction of screen-
shots (activated by pressing a key), a continuous extraction
of images or extraction of images after a certain amount
of elapsed time or executed machine cycles is currently not
supported.

8. OTHER PRESERVATION ACTIONS
Executing programs using emulation on a hardware level
is only one of the different alternatives that can be used for
preserving software. Figure 8 shows the different levels in the
execution view-path of the C7420 and also lists preservation
action strategies for each of the levels.

8.1 Hardware Level
On the hardware level the emulator that was implemented
can be used to preserve the system’s behavior and thus cre-
ate a rendering environment where the original operating
system software (BIOS) can be used to execute the pro-
grams. As shown before, the reengineering effort necessary



Figure 8: Preservation actions for different layers of view-path.

to implement an emulator is quite high, even though this
method is probably the most accurate one.

8.2 Functional Level
Creating an emulator for the BASIC-programs not on a
hardware level but on a functional level would require to
implement an interpreter for the BASIC-code, that emu-
lates the functions of the original BASIC-commands. In-
stead of executing the underlying Z80 machine language
code in the BIOS if e.g. a

”
PRINT” command is executed,

the interpreter would emulate the behavior of the command,
i.e. printing characters on the screen. Data extraction and
injection is obviously much less complex, as the rendering
environment can be directly manipulated and the behavior
of each command can be controlled.

8.3 Source Code Migration
A completely different strategy than emulating the system
on a hardware level or emulating the commands on a func-
tional level is the migration of the BASIC-programs to a
non-obsolete programming language. Running a parser over
the programs and migrating every command to a represen-
tation in a non-obsolete programming language allows us to
create stand-alone versions of the programs that can be run
without the need of an emulator program. While some of the
commands would be quite easy to migrate (e.g. mathemat-
ical operations), others would involve more complex imple-
mentations (e.g. setting a different screen mode, displaying
characters on the screen). Another obstacle to overcome in
the special case of the C7420 is the flow of program exe-
cution, if the target language is a structured programming
language instead of an unstructured one that is line-based
like the used Microsoft BASIC-80 language. Jumps in the
program between line numbers (and even to calculated line
numbers stored in variables) have to be converted to differ-
ent types of control flow statements (e.g. loops or choices).
The principal possibility of this conversion has already been
shown in [1].

9. CONCLUSIONS AND FUTURE WORK
In this paper we described how an emulator for an early
home computer system was developed. We presented the
reengineering work involved in enabling emulation of the sys-
tem itself as well as reengineering necessary for emulating
save and load functions. The emulation was implemented

keeping digital preservation applications in mind, so data
injection and extraction with ease of use for users without
expert knowledge of the system was implemented. We de-
scribed what challenges arose while implementing the emu-
lation and what design decisions were taken and why. We
also explained how we were trying to keep special digital
preservation requirements in mind when implementing cer-
tain features like extracting data from the emulation envi-
ronment. We showed how different rendering environments
can be compared and on what levels specifically for the ma-
chine in the case study, and how this either is already sup-
ported or would have to be implemented in the future. Fi-
nally, we discussed other options for preserving software for
the home computer system evaluated like source code mi-
gration and high level emulation in the form of a BASIC
interpreter.

The work performed for this emulator shows how complex
the task to develop an emulator is and what steps are in-
volved especially for a system without proper and open doc-
umentation. It further shows what design decisions arise
during the development of an emulator especially when hav-
ing a long term approach in mind and not only a short term
solution for executing software of a recently obsolete system.

The implementation of the emulator was considered a suc-
cess as the digital objects migrated previously from audio
tapes could be injected and successfully executed in the em-
ulated environment. The case study also showed that the
actual implementation of the emulation of the C7420 Home
Computer cartridge was in this special case a comparatively
less complex task, as a well documented and already emu-
lated Z80 processor was used as the central processing unit
of the C7420. The more time intensive task was the reengi-
neering of the components used for data injection and data
extraction, on one hand the emulation of the C7420 tape
interface, and on the other hand the proper emulation of
keyboard input and data extraction to the clipboard.

One important lesson learned while implementing the emu-
lator was that the input and output routines will most likely
have to be adapted at the time of dissemination of archived
data. A change in layout of keyboards used between archiv-
ing the emulator and the data to be rendered will already
enforce a change in the keyboard routines of the emulator.



If the method of entering data changes from keyboard to
something else (which is not an unlikely scenario given a
time frame of 50 to 100 years) the mapping of data input
has to be completely adapted. Similarly, the data extraction
from the emulated environment in the shown example al-
ready enforced a change in certain character codes. Given a
longer time frame between archival and reuse of the archived
emulator, these kind of adaptions are even more likely to be
necessary, even if the environment for the emulator (e.g. an
emulation virtual machine as described in [15]) keeps the
emulator executable.

For future work we plan to implement other strategies for
preserving the C7420 software as listed in Section 8. A com-
parison of the different strategies on different levels of the
view path will be performed to show how the quality of emu-
lation can be objectively measured. The results of the work
carried out on the fairly simple C7420 Home Computer car-
tridge system will then be applied to more complex systems.

10. ACKNOWLEDGMENTS
The research was co-funded by COMET K1, FFG - Austrian
Research Promotion Agency and by European Community
under the IST Programme of the 7th FP for RTD - Project
ICT-269940/TIMBUS.

11. REFERENCES
[1] E. Ashcroft and Z. Manna. The translation of ’go to’

programs to ’while’ programs, pages 49–61. Yourdon
Press, Upper Saddle River, NJ, USA, 1979.

[2] C. Becker, H. Kulovits, M. Guttenbrunner, S. Strodl,
A. Rauber, and H. Hofman. Systematic planning for
digital preservation: Evaluating potential strategies
and building preservation plans. International Journal
on Digital Libraries, 10(4):133–157, 2009.

[3] C. Becker, A. Rauber, V. Heydegger, J. Schnasse, and
M. Thaller. Systematic characterisation of objects in
digital preservation: The extensible characterisation
languages. Journal of Universal Computer Science,
14(18):2936–2952, 2008. http://www.jucs.org/jucs_
14_18/systematic_characterisation_of_objects.

[4] A. Bonardi and J. Barthélemy. The preservation,
emulation, migration, and virtualization of live
electronics for performing arts: An overview of
musical and technical issues. J. Comput. Cult. Herit.,
1(1):1–16, 2008.

[5] S. Granger. Emulation as a digital preservation
strategy. D-Lib Magazine, Vol. 6 (10), 2000.
http://www.dlib.org/dlib/october00/granger/

10granger.html.

[6] M. Guttenbrunner, C. Becker, and A. Rauber.
Keeping the game alive: Evaluating strategies for the
preservation of console video games. International
Journal of Digital Curation (IJDC), 5(1):64–90, 2010.

[7] M. Guttenbrunner, M. Ghete, A. John, C. Lederer,
and A. Rauber. Migrating home computer audio
waveforms to digital objects: A case study on digital
archaeology. International Journal of Digital Curation
(IJDC), 6(1):79–98, 2011.

[8] M. Guttenbrunner, J. Wieners, A. Rauber, and
M. Thaller. Same same but different - comparing
rendering environments for interactive digital objects.

In M. Ioannides, D. W. Fellner, A. Georgopoulos, and
D. G. Hadjimitsis, editors, EuroMed, volume 6436 of
Lecture Notes in Computer Science, pages 140–152.
Springer, 2010.

[9] ISO. Space data and information transfer systems –
Open archival information system – Reference model
(ISO 14721:2003), 2003.

[10] R. Lorie. A project on preservation of digital data.
RLG DigiNews, Vol. 5 (3), 2001. http://www.rlg.
org/preserv/diginews/diginews5-3.html#feature2.

[11] D. B. Marcum. The preservation of digital
information. The Journal of Academic Librarianship,
22(6):451 – 454, 1996.

[12] B. Matthews, B. McIlwrath, D. Giaretta, and
E. Conway. The significant properties of software: A
study. JISC Study, 2008. http:
//www.jisc.ac.uk/media/documents/programmes/

preservation/spsoftware_report_redacted.pdf.

[13] T. A. Phelps and P. Watry. A no-compromises
architecture for digital document preservation. In
Proceedings from 9th European Conference on
Research and Advanced Technology for Digital
Libraries, pages 266–277, 2005.

[14] J. Rothenberg. Using Emulation to Preserve Digital
Documents, Tech. Rep. Koninklijke Bibliotheek, 2000.

[15] J. Slats. Emulation: Context and current status. Tech.
Rep., 2003. http://www.digitaleduurzaamheid.nl/
bibliotheek/docs/white_paper_emulatie_EN.pdf.

[16] J. van der Hoeven, B. Lohman, and R. Verdegem.
Emulation for digital preservation in practice: The
results. International Journal of Digital Curation, Vol.
2 (2):123–132, 2007.

[17] J. van der Hoeven and H. van Wijngaarden. Modular
emulation as a long-term preservation strategy for
digital objects. In 5th International Web Archiving
Workshop (IWAW05), 2005.

[18] R. J. van Diessen. Preservation requirements in a
deposit system. IBM/KB Long-Term Preservation
Study Report Series Number 3 Chapter 3, 2002.
http://www-05.ibm.com/nl/dias/resource/

preservation.pdf.


