
Monitoring for Digital Preservation of Processes

Martin Alexander Neumanna, Till Riedela, Philip Taylorb,
Hedda R. Schmidtkea, and Michael Beigla

aKarlsruhe Institute of Technology, Karlsruhe, Germany
{mneumann,riedel,schmidtke,beigl}@teco.edu

bSAP Research, Belfast, United Kingdom
{philip.taylor}@sap.com

Abstract. Digital Preservation is an important challenge for the infor-
mation society. Reliable information and communication technology is
crucial for most companies and software failure, is a considerable risk.
Use of technologies such as Software as a Service (SaaS) and Internet of
Services (IoS) means that business processes are increasingly supported
by distributed, service oriented systems. We propose a concept and meth-
ods for capturing of contextual information, event causality and timing
for Digital Preservation of distributed business processes and services.
The architecture is derived from an architecture for monitoring sensing
systems. We add a reasoner that can check whether processes adhere to
explicit contracts and detect behavior anomalies, and we sketch how an
inductive learner can be used to detect anomalies not covered by these
contracts.

Keywords: Digital preservation, context monitoring, sensing systems

1 Introduction

The main problem of digital storage, in contrast to traditional media such as
paper or stone, is that specific computing technologies are needed to access it.
Reading devices and formats change at a rapid speed that makes it difficult to
restore information. The goal of Digital Preservation (DP) is the preservation
of information that is stored digitally. DP of business processes and services is
a novel and important challenge for the information society. Reliable informa-
tion and communication technology is crucial for most companies, and software
failure is a considerable risk. The presence of Software as a Service (SaaS) and
Internet of Services (IoS) means business processes are increasingly supported by
service oriented systems where numerous services provided by different providers
located in different geographical locations are composed to form service systems
which will continue evolving. Besides the advantages of SaaS and IoS, there is
the danger of services and service providers disappearing (for various reasons)
leaving partially complete business processes. DP of business processes and ser-
vices therefore requires that the set of activities, processes and tools that ensure
continued access to services and software necessary to produce the context within



which information can be accessed, properly rendered, validated and transformed
into knowledge can be preserved. Means for DP are proposed for several layers of
the network. Software contracts and service contracts protect the links between
pieces of code with a formally verifiable interface [1]. Conventional DP and dig-
ital archiving ensure that data can be restored, even when the original storage
technology is out of use [5]. Virtualization allows a nearly complete conserva-
tion of computing environments [4]. Digital escrow services ensure that software
systems can survive their providers [7].

However, these methods do not yet take context into account. Often, it is
not clear at a given time, which information would be required later to restore
a system. What is a clear boundary of technical feasibility today can be a pa-
rameter to be represented in the future. Computing power is a straightforward
example. Consider a time t0 where we have a network connection whose speed
is below the speed of a database lookup. Assume there is a race condition: our
service internally sends a request to a remote server and concurrently looks up
a required parameter in the database. As the database access is always faster
than the network request, we obtain the parameter before the remote server re-
sponse. If we later (time t1) restore the digitally preserved system in a virtual
environment, we might obtain a system in which the network is faster than the
database leading to different results than with the original system. Capturing
such constraints is therefore crucial. However, we often do not understand the
parameters that make up these constraints. The context in which things happen
is usually implicit, informal and natural to the actors at time t0. It is something
that they take as a constant, given information to which one does not need to
pay attention. It becomes a relevant parameter that has to be modeled only for
the actors at time t1, to whom this information is no longer constant and given.

An important challenge is therefore to capture contextual information for
preservation. Parameters of context that have to be preserved include timing
constraints and causal links, i.e. parameters that are often at least partially
constrained through Service Level Agreements (SLA) or service contracts, but
also, e.g., the location of servers, which determine e.g. timezones and applicable
law, as well as the involved natural or legal persons. Such parameters of context
can be preserved if changes in these parameters can be detected: conventional
debugging techniques can be used to monitor such changes for the formalized
parts of the system. However, these tools cannot yet handle the full complexity of
a system operating in an at least partially unpredictable environment. Advances
on this challenge have been made in the area of debugging of sensing systems.

Debugging approaches based on analysis of a system’s run time enable to
monitor processes, as they have the ability to inspect the entire state of a sys-
tem. Debugging approaches may either operate on a physical system or on a
simulated one. Simulations differ in the degree of simulation accuracy and they
offer high visibility into, and control on the run time state at high performance
in contrast to physical systems. In addition, physical environments serve as the
foundation for debugging techniques which for example offer entire system state
inspection and step debugging [14]. They can for example be based on con-



trolled testbed facilities which enhance the visibility into, and the control on
networks and nodes. Tracing-based debugging techniques primarily refer to dis-
crete event tracing, whereby events may, for example, be network messages [3]
or events generated on sensor nodes [11]. Analysis on gathered traces may serve
for fault detection only, or additionally offer isolation and identification of faults
[12]. Program flow tracing is another type of tracing approach to address debug-
ging [2]. Model-based approaches that continuously monitor systems to supervise
formally-given knowledge on system behavior are closest to our approach. Mod-
els may for example be based on automata [6], Petri Nets (PNs) [13] or logic
[8]. Our approach uses PN-based models which are given either explicitly or
implicitly learned from informal knowledge.

We propose a concept and methods for capturing and monitoring such con-
textual information. Our architecture is based on an architecture for monitoring
sensing systems (Sect. 2.1). We complement this with a deductive reasoner (Sect.
2.2) that can check whether processes adhere to explicit contracts to detect be-
havior anomalies, and we sketch how an inductive learner can be used to detect
anomalies not covered by these contracts.

2 Monitoring of Processes in Context

Monitoring of process contexts provides the abilities to decide when to preserve
what elements of a process (or the entire one) digitally, based on the supervision
whether context behavior adheres to given contracts. Contracts on contexts can
either be given explicitly, e.g. based on SLAs, or implicitly, based on learned
normality behavior. Primarily, collected contexts are subject to be contracted
on, i.e. the values that define contexts. Secondarily, the context behavior over
time are contracted on based on their causality and timing.

We differentiate two types of processes: legacy processes which are not en-
abled for DP yet, and DP-enabled processes which have been explicitly designed
for preservation. The difference between both types is that DP-enabled processes
require defined process semantics, e.g. based on BPMN, and defined relevant
process contexts – both of which may not available with legacy processes.

Legacy processes can be extended to learn the normality behavior of their
relevant contexts and to supervise whether the contexts adhere to learned nor-
mality in future. This extension fosters anomaly detection in established pro-
cesses and restored ones. Detected anomalies either reflect faults or deliberate
process changes that indicate a new version of a process. Therefore, anomalies
represent events to determine whether a new version of a process should be
preserved, e.g. by the help of a DP engineer. The extension of legacy processes
limits qualitative evaluation of anomalies (whether they reflect failure or delib-
erate change), because the extension lacks fine-grained association of anomalies
to process elements with respect to process semantics. This association would
provide qualitative evaluation of anomalies and DP at process element level.

This fundamental anomaly detection will also be available with future DP-
enabled processes. In addition, DP-enabled processes will supersede this anomaly



detection by offering fine-grained association of anomalies to process elements
and qualitative evaluation of anomalies and DP at process elements scale. Con-
texts of DP-enabled processes will be well understood and defined at design time
of processes. This enables explicit contracts consisting of rules on process con-
texts whose behaviors are well-defined with respect to process semantics, e.g.
based on rules derived from the semantics.

2.1 Distributed State Inspection

The DSI concept offers to inspect sensor nodes in an entire (physical, simulated,
mixed-mode) WSN and collect events sourced by the nodes, e.g. notifications of
state changes. The concept is based on a 3-layer architecture shown in figure 1,
of which the lower two provide state inspection and event tracing.

F
ro
n
t-
E
n
d Analysis Techniques

State Analysis Events Analysis

M
id
d
le
-E
n
d

DSI Framework

Synchronized Sen-
sor Node State

Event Trace

B
ac
k
-E
n
d

Run Time Environment (RTE)

Sensor
Node

Events

Fig. 1. DSI Architecture Overview

D
S
I
F
ra
m
ew

or
k

Run Time Environment Connector

Sensor Node State Manager

API

Events Manager

API

B
ac
k
-E
n
d

Run Time Environment

Synchronous Asynchronous

Fig. 2. Focus on DSI Framework

The back-end is formed by the Run Time Environment (RTE) for any pro-
grams on a WSN. The RTE provides the state of all running programs to clients.
In addition, the RTE emits discrete events, e.g. in case a state on a sensor node
changed. Events are emitted via an asynchronous interface to which clients can
subscribe. The state inspection interface allows clients to connect to the RTE
and perform state synchronization operations whose execution is performed syn-
chronously between clients and the server. The middle-end is represented by a
framework that encompasses the modules that enable sensor node state inspec-
tion and event tracing to front-ends. The framework asynchronously gathers
events sourced by the RTE and continuously synchronizes the state of all sensor
nodes in an asynchronous fashion after registering for relevant state changes on
sensor nodes in the RTE.

The DSI framework is meant to be a foundation for analysis approaches (in
the front-end) that analyze the distributed state of and discrete events from
a WSN. From a client’s perspective, the DSI framework offers a set of APIs
to continuously synchronize a model of the RTE as illustrated in figure 2. The
framework is founded on the RTE Connector which acts as a proxy to the
shielded RTE, establishing a loose-coupling (integrated but isolated) between
the RTE and the other components of the framework.



Using events from the RTE, the state manager is notified of relevant state
changes. Furthermore, the events manager organizes events from the RTE in
general. Clients subscribe to event types in the events manager whereby the
manager provisions the event gathering and notification of registered clients.

The DSI framework requires the RTE to offer the following features: (1)
inspect the state of the programs in a WSN; (2) event generation; and (3) a no-
tification mechanism for relevant state changes (clients register for notifications
of relevant state changes via discrete events).

2.2 Context Engine

We extend the DSI concept by a context engine (depicted in figure 3), which is
built on top of the DSI framework and provides the illustrated monitoring and
anomaly detection capabilities. DP of software services requires dedicated rea-
soning systems, which, given a set of facts monitored with the monitoring system
can determine: (1) SLA compliance queries asking whether the monitored set
of facts is consisted with service level agreements (SLA); (2) SLA preservation
queries asking whether the monitored set of facts fulfills the requirements of a
DP case specified between the parties in an SLA; (3) Anomaly queries asking
whether the monitored set of facts is consistent with previous behavior for detect-
ing whether there might have been an unnotified change of operations. The idea
is that the DSI framework enables monitoring contexts by mapping the values
of contexts into the program state on the sensor nodes, effectively synchroniz-
ing a network-wide context representation of the RTE into the DSI framework.
The context monitor translates the network-wide contextual information into
a logical format to provide a logical representation of every monitored context
change.

C
on

te
x
t
E
n
gi
n
e

Context Monitor

Context Formulas

Inductive Learner Deductive Reasoner

Implicit Rules Explicit Rules

Detected Anomalies

F
rm

w
rk Sensor Node

State Manager
Trace Manager

Fig. 3. Context Engine Architecture

s0

a
s2

s1

s3

b

c
sok

Fig. 4. CL Example as Petri Net

The architecture contains an inductive learner and a deductive reasoner : the
queries (1) and (2) can be decided using a classical deductive reasoning system.
The third type of query additionally needs a behavior learning mechanism. The
deductive reasoner detects anomalies on context behavior. Its operations are
based on deduction of contradictions from the context formulas by the context
monitor, the implicit rules and explicit rules. A deducted contradiction results
in an anomaly detection event, as the monitored context behavior contradicts



the one which is formally stipulated by the rules (implicit and explicit ones).
We suggest a mechanism based on Context Logic (CL), a formalism that fea-
tures a syntax similar to Description Logics (DL) with a specific set of relations
employed to describe contextual relations [10]. A detailed exposition of CL is
beyond the scope of this paper and can be found in [9].

Syntax Example Reading

c vwho d paul vwho admin c is a sub-group of d

c vwhat d car vwhat smart-vehicle c is a sub-class of d

c vwhen d July.1.13:00 vwhen Summer c is during d

c vwhere d geo4154N 1230E vwhere Rome c is (spatially) in d

Table 1. Relations in Context Logic

Intuitively, atomic formulae of CL describe partial ordering relations between
contexts, which can be atomic identifiers or complex expressions. In contrast to
DL, the atomic formulae of CL can be combined with propositional logic con-
junctives. Four fundamental relations of CL are shown in table 1. However, using
additional relations vhow, vwhy, basic condition/event structures as required for
the DSI can be encoded. A condition/event Petri Net (PN) 〈P, T, F,m0〉 con-
sists of a set of places P encoding conditions and a set T of transitions encoding
events, where F ⊂ (P × T ) ∪ (T × P ) is the set of edges of the net and m0

is the initial marking. Here a function mi : P → {0, 1} is called a marking. A
transition t is activated in a marking mi iff for all p holds:

– if (t, s) ∈ F then mi(p) = 0
– if (s, t) ∈ F then mi(p) = 1.

We match the how-dimension to conditions, i.e. places, and the why-dimension
to events, i.e. transitions. We can encode the edges in the net shown above (Fig.
4) with c(i) representing the current context at time i by encoding pre-conditions
and post-conditions:

[s0 vhow c(i)] ∧ ¬[s1 t s2 t s3 vhow c(i)]→ [c(i) vwhy a] (1)

[s1 t s2 vhow c(i)]→ [c(i) vwhy b]⊕ [c(i) vwhy c] (2)

[c(i) =why a]→ [s1 t s2 t s3 vhow c(i + 1)] (3)

[c(i) =why b]⊕ [c(i) =why c]→ [sok vhow c(i + 1)] (4)

– If s0 holds in c(i) and s1, s2, and s3 do not hold, then a fires in c(i).
– If s1 and s2 hold in c(i) and s1, s2, and s3 do not, then c xor d fires in c(i).
– If a fires in c(i), then s1, s2, and s3 hold in c(i + 1).
– If b xor c fires in c(i), then sok holds in c(i + 1).

3 Conclusion

We proposed a concept and methods for capturing contextual information, event
causality and timing for DP of distributed business processes and services, which
can track changes and generate decision events, so as to automatically trigger



basic preservation steps or to notify a DP engineer. The architecture is derived
from a concept for monitoring sensing systems. We added a deductive reasoner
that can check processes for adherence to explicit contracts, and we sketch how an
inductive learner can be used to detect anomalies not covered by these contracts.

Acknowledgments The authors would like to acknowledge the funding by the
European Commission under the ICT project “TIMBUS” (Project No. 269940,
FP7-ICT-2009-6) within the 7th Framework Programme.

References

1. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Proceedings of CONCUR 2010. pp. 162–
176. Springer (2010)

2. Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., Luo, L.: Declarative trace-
points: a programmable and application independent debugging system for wireless
sensor networks. In: Proceedings of SenSys 2008. pp. 85–98. ACM (2008)

3. Chen, B.R., Peterson, G., Mainland, G., Welsh, M.: Livenet: Using passive mon-
itoring to reconstruct sensor network dynamics. In: Proceedings of DCOSS 2008.
pp. 79–98. Springer (2008)

4. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VMPlants: Pro-
viding and Managing Virtual Machine Execution Environments for Grid Comput-
ing. In: Proceedings of SC 2004. IEEE, Washington, DC, USA (2004)

5. Lee, K.H., Slattery, O., Lu, R., Tang, X., Mccrary, V.: The state of the art and
practice in digital preservation. Research of the National Institute of Standards
and Technology 107(1), 93–106 (2002)

6. Li, P., Regehr, J.: T-check: bug finding for sensor networks. In: Proceedings of
IPSN 2010. pp. 174–185. ACM, New York, NY, USA (2010)

7. Nycum, S.H., Kenfield, D.L., Keenan, M.A.: Debugging software escrow: Will it
work when you need it? Computer Law 4(3), 441–463 (1984)

8. Römer, K., Ringwald, M.: Increasing the visibility of sensor networks with passive
distributed assertions. In: Proceedings of REALWSN 2008. pp. 36–40. ACM, New
York, NY, USA (2008)

9. Schmidtke, H.R., Hong, D., Woo, W.: Reasoning about models of context: A
context-oriented logical language for knowledge-based context-aware applications.
Revue d’Intelligence Artificielle 22(5), 589–608 (2008)

10. Schmidtke, H.R., Woo, W.: Towards ontology-based formal verification methods
for context aware systems. In: Tokuda, H., Beigl, M., Brush, A., Friday, A., Tobe,
Y. (eds.) Pervasive 2009. pp. 309–326. Springer (2009)

11. Tolle, G., Culler, D.: Design of an application-cooperative management system for
wireless sensor networks. In: Proceedings of EWSN 2005. pp. 121–132 (2005)

12. Woehrle, M., Plessl, C., Lim, R., Beutel, J., Thiele, L.: Evant: Analysis and check-
ing of event traces for wireless sensor networks. In: Proceedings of SUTC 2008. pp.
201–208. IEEE, Washington, DC, USA (2008)

13. Wu, Y., Kapitanova, K., Li, J., Stankovic, J.A., Son, S.H., Whitehouse, K.: Run
time assurance of application-level requirements in wireless sensor networks. In:
Proceedings of IPSN 2010. pp. 197–208. ACM, New York, NY, USA (2010)

14. Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks. In: Proceedings of SenSys 2007.
pp. 189–203. ACM, New York, NY, USA (2007)


